Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 193–202

Critical Nitrogen Deposition Loads in High-elevation Lakes of the Western US Inferred from Paleolimnological Records

  • Jasmine E. Saros
  • David W. Clow
  • Tamara Blett
  • Alexander P. Wolfe


Critical loads of nitrogen (N) from atmospheric deposition were determined for alpine lake ecosystems in the western US using fossil diatom assemblages in lake sediment cores. Changes in diatom species over the last century were indicative of N enrichment in two areas, the eastern Sierra Nevada, starting between 1960 and 1965, and the Greater Yellowstone Ecosystem, starting in 1980. In contrast, no changes in diatom community structure were apparent in lakes of Glacier National Park. To determine critical N loads that elicited these community changes, we modeled wet nitrogen deposition rates for the period in which diatom shifts first occurred in each area using deposition data spanning from 1980 to 2007. We determined a critical load of 1.4 kg N ha−1 year−1 wet N deposition to elicit key nutrient enrichment effects on diatom communities in both the eastern Sierra Nevada and the Greater Yellowstone Ecosystem.


Critical load Atmospheric nitrogen deposition Alpine lake ecosystems Diatoms 


  1. Baron, J. (2006). Hindcasting nitrogen deposition to determine an ecological critical load. Ecological Applications, 16, 433–439.CrossRefGoogle Scholar
  2. Battarbee, R. W., Allott, T. E. H., Juggins, S., Kreiser, A. M., Curtis, C., & Harriman, R. (1996). Critical loads of acidity to surface waters: an empirical diatom-based paleolimnological model. Ambio, 25, 366–369.Google Scholar
  3. Bergström, A. K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Science. doi:10.1007/s00027-010-0132-0.Google Scholar
  4. Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecological Applications, 16, 1183–1193.CrossRefGoogle Scholar
  5. Camburn, K. E. & Charles, D. F. (2000). Diatoms of low-alkalinity lakes in the northeastern United States. Acad. Natl. Sci. Phila. Spec. Publ. 18.Google Scholar
  6. Charles, D. F., Binford, M. W., Furlong, E. T., Hites, R. A., Mitchell, M. J., Norton, S. A., et al. (1990). Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. Journal of Paleolimnology, 3, 195–241.Google Scholar
  7. Clean Air Status and Trends Network (CASTNET), 1997-2004. (http://www.epa.gov/castnet).
  8. Curtis, C., Allott, T., Hall, J., Harriman, R., Helliwell, R., Hughes, M., et al. (2000). Critical loads of sulphur and nitrogen for freshwaters in Great Britain and assessment of deposition reduction requirements with the First-Order Acidity Balance (FAB) model. Hydrology and Earth System Sciences, 4, 125–140.CrossRefGoogle Scholar
  9. Curtis, C., Botev, I., Camarero, L., Catalan, J., Cogalniceanu, D., Hughes, M., et al. (2005). Acidification in European mountain lake districts: a regional assessment of critical load exceedance. Aquatic Sciences-Research Across Boundaries, 67, 237–251.Google Scholar
  10. Eakins, J. D., & Morrison, R. T. (1978). A new procedure for the determination of lead-210 in lake and marine sediments. The International Journal of Applied Radiation and Isotopes, 29, 531–536.CrossRefGoogle Scholar
  11. Fenn, M. E., Haeuber, R., Tonnesen, G. S., Baron, J. S., Grossman-Clarke, S., Hope, D., et al. (2003). Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience, 53, 391–403.CrossRefGoogle Scholar
  12. Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.CrossRefGoogle Scholar
  13. Hall, R. I., Leavitt, P. R., Smol, J. P., & Zirnhelt, N. (1997). Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshwater Biology, 38, 401–417.CrossRefGoogle Scholar
  14. Henriksen, A., Kimiri, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface waters. Ambio, 21, 356–363.Google Scholar
  15. Holland, E. A., Braswell, B. H., Sulzman, J., & Lamarque, J. (2005). Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecological Applications, 15, 38–57.CrossRefGoogle Scholar
  16. Krammer, K. & Lange-Bertalot, H. (1986-1991). Susswasserflora von Mitteleuropa. Bacilloriophyceae. Stuttgart: Gustav Fischer, Volumes I-IV.Google Scholar
  17. Landers, D. H., Eilers, J. M., Brakke, D. F., Overton, W. S., Kellar, P. E., Silverstein, M. E., et al. (1987). Western lake survey, phase 2, Characteristics of lakes in western United States (Vol. 1, Population descriptions and physico-chemical relationships, EPA-600/3–86/054a). Washington, D. C: US Environ. Prot. Agency.Google Scholar
  18. Landers, D. H., Simonich, S. L., Jaffe, D. A., Geiser, L. H., Campbell, D. H., Schwindt, A. R., Schreck, C. B., Kent, M. L., Hafner, W. D., Taylor, H. E., Hageman, K. J., Usenko, S., Ackerman, L. K., Schrlau, J. E., Rose, N. L., Blett, T. F., & Erway, M. M. (2008). The Fate, Transport, and Ecological Impacts of Airborne Contaminants in Western National Parks (USA). EPA/600/R-07/138. U.S. Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, Corvallis, Oregon.Google Scholar
  19. Lewis, W. M., Jr., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology, 93, 446–465.CrossRefGoogle Scholar
  20. Melack, J. M., Sickman, J. O., & Leydecker, L. (1998). Comparative analyses of high-altitude lakes and catchments in the Sierra Nevada: susceptibility to acidification. Final Report, California Air Resources Board, Contract A032-188.Google Scholar
  21. Morris, D. P., & Lewis, W. M., Jr. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315–327.CrossRefGoogle Scholar
  22. NADP/NTN (National Atmospheric Deposition Program/National Trends Network), 2009. (http://nadp.sws.uiuc.edu).
  23. Nanus, L., Campbell, D. H., Ingersoll, G. P., Clow, D. W., & Mast, M. A. (2003). Atmospheric deposition maps for the Rocky Mountains. Atmospheric Environment, 37, 4881–4892.CrossRefGoogle Scholar
  24. Nanus, L., Williams, M. W., Campbell, D. H., Tonnessen, K. A., Blett, T., & Clow, D. W. (2009). Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains. Ecological Applications, 19, 961–973.CrossRefGoogle Scholar
  25. Oldfield, F., & Appleby, P. G. (1984). Empirical testing of 210Pb-dating models for lake sediments. In E. Y. Haworth & J. W. G. Lund (Eds.), Lake sediments and environmental history (pp. 93–124). Minneapolis: University of Minnesota Press.Google Scholar
  26. Pederson, G. T., Graumlich, L. J., Fagre, D. B., Kipfer, T., & Muhlfeld, C. C. (2009). A century of climate and ecosystem change in western Montana: what do temperature trends portend? Climatic Change. doi:10.1007/s10584-009-9642-y.Google Scholar
  27. Porter, E., Blett, T., Potter, D., & Huber, C. (2005). Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience, 55, 603–612.CrossRefGoogle Scholar
  28. Rühland, K., Paterson, A. M., & Smol, J. P. (2008). Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14, 2740–2754.Google Scholar
  29. Saros, J. E., Interlandi, S. J., Wolfe, A. P., & Engstrom, D. R. (2003). Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA. Arctic, Antarctic and Alpine Research, 35, 18-–25.CrossRefGoogle Scholar
  30. Saros, J. E., Michel, T. J., Interlandi, S. J., & Wolfe, A. P. (2005). Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Sciences, 62, 1681–1689.CrossRefGoogle Scholar
  31. Saros, J.E., Rose, K.C., Clow, D.W., Stephens, V.C., Nurse, A.B., Arnett, H.A., Stone, J.S., Williamson, C.E., & Wolfe, A.P. (2010). Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environmental Science & Technology. doi:10.1021/es100147j.
  32. Schlesinger, W. H. (2009). Thresholds risk prolonged degradation. Nature Reports Climate Change, 3, 112–113.CrossRefGoogle Scholar
  33. Smith, R. A., Alexander, R. B., & Schwartz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science & Technology, 37, 3039–3047.CrossRefGoogle Scholar
  34. Smol, J. P., et al. (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Science, 102, 4397–4402.CrossRefGoogle Scholar
  35. Whiting, M. C., Whitehead, D. R., Holmes, R. W., & Norton, S. A. (1989). Paleolimnological reconstruction of recent acidity changes in four Sierra Nevada lakes. Journal of Paleolimnology, 2, 285–304.CrossRefGoogle Scholar
  36. Winder, M., Reuter, J. E., & Schladow, S. G. (2009). Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B, 276, 427–435.CrossRefGoogle Scholar
  37. Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1–7.CrossRefGoogle Scholar
  38. Wolfe, A. P., Van Gorp, A. C., & Baron, J. S. (2003). Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): A response to anthropogenic nitrogen deposition. Geobiology, 1, 153–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jasmine E. Saros
    • 1
  • David W. Clow
    • 2
  • Tamara Blett
    • 3
  • Alexander P. Wolfe
    • 4
  1. 1.Climate Change Institute, and School of Biology and EcologyUniversity of MaineOronoUSA
  2. 2.US Geological Survey, Water Resources DisciplineLakewoodUSA
  3. 3.National Park Service, Air Resources DivisionLakewoodUSA
  4. 4.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations