Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 93–103

Phytoextraction of Cadmium and Phytostabilisation with Mugwort (Artemisia vulgaris)

Article
  • 223 Downloads

Abstract

Artemisia vulgaris (mugwort) is a tall (1.0–2.0 m) high biomass perennial herb which accumulates considerable amounts of metals on contaminated sites. An outdoor pot experiment was conducted on a sandy, slightly alkaline soil of moderate fertility to study the uptake of cadmium and the distribution of Cd in plant tissues of A. vulgaris. Cadmium was applied as CdCl2 (a total of 1 l solution of 0, 10, 50 and 100 mg Cd l−1) to 12-l pots with a height of 25 cm. HNO3- and water-extractable concentrations of Cd were correlated with the applied Cd at 2-cm soil depth, but were not correlated at 20-cm soil depth, suggesting that Cd was either not mobile in the soil or completely taken up by mugwort roots. The Cd concentrations in different organs of A. vulgaris and litter increased with increasing soil contamination. Leaf/soil concentration ratios (BCFs) up to 65.93 ± 32.26 were observed. Translocation of Cd to the aboveground organs was very high. The leaf/root Cd concentration ratio (translocation factor) ranged from 2.07 ± 0.56 to 2.37 ± 1.31; however, there was no correlation of translocation factors to Cd enrichment, indicating similar translocation upon different soil contamination levels. In summary, A. vulgaris is tolerant to the metal concentrations accumulated, has a high metal accumulating biomass and accumulates Cd up to about 70% in the aboveground parts. Both a high phytoextraction potential and a high value for phytostabilisation would recommend mugwort for phytoremediation.

Keywords

Bioconcentration factor Bioremediation Heavy metal Phytoattenuation Phytoextraction potential Phytostabilisation 

References

  1. Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie Academic and Professional.Google Scholar
  2. Álvarez-Ayuso, E. (2008). Cadmium in soil–plant systems: an overview. International Journal of Environment and Pollution, 33, 275–291.CrossRefGoogle Scholar
  3. Baker, A. J. M. (1981). Accumulators and excluders—Strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.CrossRefGoogle Scholar
  4. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which can hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  5. Baker, A. J. M., & Proctor, J. (1990). The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution, 173, 91–108.CrossRefGoogle Scholar
  6. Baker, A. J. M., & Whiting, S. N. (2002). In search of the Holy Grail—A further step in understanding metal hyperaccumulation? The New Phytologist, 155, 1–4.CrossRefGoogle Scholar
  7. Barney, J. N., & DiTommaso, A. (2003). The biology of Canadian weeds. 118. Artemisia vulgaris L. Canadian Journal of Plant Science, 83, 205–215.Google Scholar
  8. Blume, H. P. (1981). Schwermetallverteilung und-bilanzen typischer Waldböden aus nordischem Geschiebemergel. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 156–163.CrossRefGoogle Scholar
  9. Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous waste (pp. 50–76). Parkridge: Noyes Data Corporation.Google Scholar
  10. Dahmani-Muller, H., van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.CrossRefGoogle Scholar
  11. Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.CrossRefGoogle Scholar
  12. Duvigneaud, P. (1975). Structure, biomasses, minéralomasses, productivité et captation du plomb dans quelques associations rudérales (Artemisietalia vulgaris). Bulletin de la Société Royale de Botaniquie Belgique, 108, 93–128.Google Scholar
  13. Ernst, W. H. O. (2000). Evolution of metal hyperaccumulation and phytoremediation hype. The New Phytologist, 146, 357–358.CrossRefGoogle Scholar
  14. Ernst, W. H. O., Mathys, W., Salaske, J., & Janiesch, P. (1974). Aspekte von Schwermetallbelastungen in Westfalen. Abhandlungen des Landesmuseums für Naturkunde Münster, 36(2), 1–33.Google Scholar
  15. Govindaraj, S., Kumari, B. D. R., Cioni, P. L., & Flamini, G. (2008). Mass propagation and essential oil analysis of Artemisia vulgaris. Journal of Bioscience and Bioengineering, 105, 176–183.CrossRefGoogle Scholar
  16. Grime, J. P., Hodgson, J. G., & Hunt, R. (1988). Comparative plant ecology. London: Unwin Hyman.Google Scholar
  17. Hunter, B. A., Johnson, M. S., & Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. Journal of Applied Ecology, 24, 573–586.CrossRefGoogle Scholar
  18. Jensen, J. K., Holm, P. E., Nejrup, J., Larsen, M. B., & Borggaard, O. K. (2009). The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution, 157, 931–937.CrossRefGoogle Scholar
  19. Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M., & Sennhauser, M. (2003). Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant and Soil, 249, 67–81.CrossRefGoogle Scholar
  20. Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.CrossRefGoogle Scholar
  21. Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249, 127–137.CrossRefGoogle Scholar
  22. Kotz, L., Kaiser, G., Tschöpel, P., & Tölg, G. (1972). Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurenelementgehalte bei begrenzter Einwaage mit Salpetersäure in einem Teflongefäß. Zeitschrift für Analytische Chemie, 260, 207–209.CrossRefGoogle Scholar
  23. Landberg, T., & Greger, M. (1996). Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180.CrossRefGoogle Scholar
  24. Lehmann, C., & Rebele, F. (2004). Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: A pot experiment. International Journal of Phytoremediation, 6, 169–183.CrossRefGoogle Scholar
  25. Little, P., & Martin, M. H. (1972). A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environmental Pollution, 3, 241–254.CrossRefGoogle Scholar
  26. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.CrossRefGoogle Scholar
  27. Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., et al. (2010). The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78, 35–41.CrossRefGoogle Scholar
  28. Migeon, A., Richaud, P., Guinet, F., Chalot, M., & Blaudez, D. (2009). Metal accumulation by woody species on contaminated sites in the north of France. Water, Air, and Soil Pollution, 204, 89–101.CrossRefGoogle Scholar
  29. Murphy, A. P., Coudert, M., & Barker, J. (2000). Plants as biomarkers for monitoring heavy metal contaminants on landfill sites using sequential extraction and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Journal of Environmental Monitoring, 2, 621–627.CrossRefGoogle Scholar
  30. Pearson, C. H., & Kirkham, M. B. (1981). Water relations of wheat cultivars grown with cadmium. Journal of Plant Nutrition, 3, 309–318.CrossRefGoogle Scholar
  31. Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—A review. Environment International, 29, 529–540.CrossRefGoogle Scholar
  32. Pulford, I. D., Riddell-Black, D., & Stewart, C. (2002). Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. International Journal of Phytoremediation, 4, 59–72.CrossRefGoogle Scholar
  33. Rebele, F. (1986). Die Ruderalvegetation der Industriegebiete von Berlin (West) und deren Immissionsbelastung. Landschaftsentwicklung und Umweltforschung, 43, 1–224.Google Scholar
  34. Rebele, F. (1989). Ruderal plants as bioindicators in the industrial areas of Westberlin. In J. Boháč and V. Ružička (Eds.) Proceedings of the Vth International Conference Bioindicatores deteriorisationis regionis, České Budějovice 1988, pp. 44–54.Google Scholar
  35. Rebele, F., & Werner, P. (1984). Untersuchungen zur ökologischen Bedeutung industrieller Brach-und Restflächen in Berlin (West). Berlin: Freie Universität Berlin.Google Scholar
  36. Rebele, F., Surma, A., Kuznik, C., Bornkamm, R., & Brej, T. (1993). Heavy metal contamination of spontaneous vegetation and soil around the copper smelter “Legnica”. Acta Societatis Botanicorum Poloniae, 62, 53–57.Google Scholar
  37. Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., et al. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.CrossRefGoogle Scholar
  38. Schuman, G. E., & Howard, G. S. (1978). Artemisia vulgaris L.: An ornamental plant for disturbed land reclamation. Journal of Range Management, 31, 392–393.CrossRefGoogle Scholar
  39. Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 249, 27–35.CrossRefGoogle Scholar
  40. Senatsverwaltung für Stadtentwicklung und Umweltschutz (Ed.) (1993). Umweltatlas Berlin, Bd. 1. Berlin: Kulturbuch.Google Scholar
  41. Simon, L., Martin, H. W., & Adriano, D. C. (1996). Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water, Air, and Soil Pollution, 91, 351–362.CrossRefGoogle Scholar
  42. Thomas, W., Rühling, Å., & Simon, H. (1984). Accumulation of airborne pollutants (PAH, chlorinated hydrocarbons, heavy metals) in various plant species and humus. Environmental Pollution (Series A), 36, 295–310.CrossRefGoogle Scholar
  43. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriansen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.CrossRefGoogle Scholar
  44. Wagenitz, G. (1987). Gustav Hegi, Illustierte Flora von Mitteleuropa, Band 4, Teil 4 (2nd ed.). Berlin: Verlag Paul Parey.Google Scholar
  45. Weston, L. A., Barney, J. N., & DiTommaso, A. (2005). A review of the biology and ecology of three invasive perennials in New York State: Japanese knotweed (Polygonum cuspidatum), mugwort (Artemisia vulgaris) and pale swallow-wort (Vincetoxicum rossicum). Plant and Soil, 277, 53–69.CrossRefGoogle Scholar
  46. Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of EcologyTechnical University BerlinBerlinGermany
  2. 2.Faculty of Agriculture and Horticulture, Department of Crop and Animal SciencesHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations