Advertisement

Water, Air, & Soil Pollution

, Volume 215, Issue 1–4, pp 595–607 | Cite as

A Comparison Between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers

  • Silvia CombaEmail author
  • Antonio Di Molfetta
  • Rajandrea Sethi
Article

Abstract

In the last 10 years, the number of field applications of zero-valent iron differing from permeable reactive barrier has grown rapidly and at present are 112. This study analyzes and compares such field applications. By using statistical analysis, especially ANOVA and principal component analysis, this study shows that chlorinated solvent contamination can be treated efficiently by using zero-valent iron material singly or associated with other technologies. In the analyzed sample of case studies, the association with microbial dechlorination increased significantly the performances of nanoscale iron. This is likely due to the synergistic effect between the two processes. Millimetric iron was always used in association with source zone containment; therefore, it is not possible to distinguish the contributions of the two techniques. The comparison also shows that catalyst addition seems to not dramatically improve treatment efficiency and that such improvement is not statistically significant. Finally, the injection technology is correlated to the type of iron and to the soil permeability.

Keywords

Nanoscale zero-valent iron (NZVI) Micrometric iron Millimetric iron Case studies Field application Injection 

Notes

Acknowledgements

This work was conducted under the CIPE-C30 project funded by Regione Piemonte (Italy) and partially supported by the Lagrange Grant from Fondazione C.R.T. (Italy).

Supplementary material

11270_2010_502_MOESM1_ESM.pdf (197 kb)
ESM 1 (PDF 197 kb)

References

  1. Christ, J. A., Ramsburg, A., Abriola, L., Pennell, K., & Löffler, F. (2005). Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environmental Health Perspectives, 113, 465–477.CrossRefGoogle Scholar
  2. Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.CrossRefGoogle Scholar
  3. Davidson, B., Spanos, T., & Zschuppe, R. (2004). Pressure pulse technology: an enhanced fluid flow and delivery mechanism. Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA.Google Scholar
  4. Della Vecchia, E., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43, 8942–8947.CrossRefGoogle Scholar
  5. Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.CrossRefGoogle Scholar
  6. He, F., & Zhao, D. Y. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.CrossRefGoogle Scholar
  7. He, F., & Zhao, D. Y. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41, 6216–6221.CrossRefGoogle Scholar
  8. He, F., Zhao, D. Y., Liu, J. C., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46, 29–34.CrossRefGoogle Scholar
  9. He, F., Zhao, D., & Paul, C. (2009). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  10. Hong, Y., Honda, R. J., Myung, N. V., & Walker, S. L. (2009). Transport of iron-based nanoparticles: role of magnetic properties. Environmental Science & Technology, 43, 8834–8839.CrossRefGoogle Scholar
  11. Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science & Technology, 41, 6418–6424.CrossRefGoogle Scholar
  12. Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30, 2634–2640.CrossRefGoogle Scholar
  13. Johnson, R. L., Johnson, G. O. B., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43, 5455–5460.CrossRefGoogle Scholar
  14. Kanel, S. R., Nepal, D., Manning, B., & Choi, H. (2007). Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research, 9, 725–735.CrossRefGoogle Scholar
  15. Keane E (2009) Fate, transport, and toxicity of nanoscale zero-valent iron (nZVI) used during superfund remediation. US Environmental Protection Agency.Google Scholar
  16. Kim, H.-J., Phenrat, T., Tilton, R. D. & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43, 3824–3830.CrossRefGoogle Scholar
  17. Kueper, B. H., Wealthall, G. P., Smith, J. W. N., Leharne, S. A., & Lerner, D. N. (2003). In E. Agency (Ed.), An illustrated handbook of DNAPL transport and fate in the subsurface (pp. 1–67). Bristol: Environment Agency.Google Scholar
  18. Kutzner, C. (1996). Grouting of rock and soil. Rotterdam: Balkema.Google Scholar
  19. Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.CrossRefGoogle Scholar
  20. Lien, H. L., & Zhang, W. X. (2007). Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Applied Catalysis B, Environmental, 77, 110–116.CrossRefGoogle Scholar
  21. Liu, Y. Q., Choi, H., Dionysiou, D., & Lowry, G. V. (2005). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.CrossRefGoogle Scholar
  22. Loffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17, 274–284.CrossRefGoogle Scholar
  23. Lowry, G. V., Saleh, N., Sirk, K., Phenrat, T., Dufour, B., Matyjaszewski, K., & Tilton, R. D. (2006). Triblock copolymer coatings enhances nanoiron transport and localizes nanoiron at the DNAPL/water interface. Division of Geochemistry, 231st ACS National Meeting, Atlanta, GA, March 26–30, 2006. Google Scholar
  24. Mace, C. (2006). Controlling groundwater VOCs: do nanoscale ZVI particles have any advantages over microscale ZVI or BNP? Pollution Engineering, 38, 24–27.Google Scholar
  25. Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28, 2045–2053.CrossRefGoogle Scholar
  26. Müller, N., & Nowack, B. (2010). Nano zero valent iron – THE solution for water and soil remediation?. Report of workshop held in Zurich (Switzerland), November 24th 2009. At: http://www.observatorynano.eu/project/filesystem/files/nZVI_final_vsObservatory.pdf.
  27. Royal Society (2005). Report of workshop on potential health, environmental, and societal impacts of nanotechnologies. London, 25 November 2005.Google Scholar
  28. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., et al. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  29. Saleh, N., Sirk, K., Liu, Y. Q., Phenrat, T., Dufour, B., Matyjaszewski, K., et al. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.CrossRefGoogle Scholar
  30. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.CrossRefGoogle Scholar
  31. Scherer, M., Balko, B. A., & Tratnyek, P. G. (1999). The role of oxides in reduction reactions at the metal–water interface. Mineral–water interfacial reactions (pp. 301–322). Washington, DC: American Chemical Society.Google Scholar
  32. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.CrossRefGoogle Scholar
  33. Sirk, K. M., Saleh, N. B., Phenrat, T., Kim, H.-J., Dufour, B., Ok, J., Golas, P. L., Matyjaszewski, K., Lowry, G. V., & Tilton, R. D. (2009). Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environmental Science & Technology, 43, 3803–3808.Google Scholar
  34. Sun, Y. P., Li, X. Q., Zhang, W. X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 308, 60–66.CrossRefGoogle Scholar
  35. Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.CrossRefGoogle Scholar
  36. Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.CrossRefGoogle Scholar
  37. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.CrossRefGoogle Scholar
  38. United States Environmental Protection Agency (2010) Contaminated site clean-up information. Available at http://www.cluin.org.
  39. US EPA (1997). Analysis of selected enhancements for soil vapor extraction. Contract Report: EPA-542-R-97-007. At: http://207.86.51.66/download/remed/sveenhmt.pdf.
  40. US EPA (2005). Nanotechnology Workgroup / EPA's Science Policy Council. Nanotechnology White Paper, 68-70, US Environmental Protection Agency. December 2, 2005. At: http://www.epa.gov/OSA/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf.
  41. Wang, J., & Farrell, J. (2003). Investigating the role of atomic hydrogen on chloroethene reactions with iron using Tafel analysis and electrochemical impedance spectroscopy. Environmental Science & Technology, 37, 3891–3896.CrossRefGoogle Scholar
  42. Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2009). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Silvia Comba
    • 1
    Email author
  • Antonio Di Molfetta
    • 1
  • Rajandrea Sethi
    • 1
  1. 1.DITAG—Dipartimento del Territorio, dell’Ambiente e delle GeotecnologiePolitecnico di TorinoTurinItaly

Personalised recommendations