Water, Air, & Soil Pollution

, Volume 215, Issue 1–4, pp 449–464

Sorption of Selected Aromatic Substances—Application of Kinetic Concepts and Quantum Mechanical Modeling

  • Sabine Klepsch
  • Adelia J. A. Aquino
  • Ursula Haas
  • Daniel Tunega
  • Georg Haberhauer
  • Martin H. Gerzabek
  • Hans Lischka
Article

Abstract

Prediction of the sorption behavior of environmental pollutants is of utmost importance within the framework of risk assessments. In this work two approaches are presented with the aim to describe sorption of aromatic substances to geosorbents. First, analytical solutions of kinetic models were fitted to experimental data of batch sorption experiments with aniline and 1-naphthylamine onto animal manure-treated soil and the soil mineral montmorillonite. The models, accounting for equilibrium and nonequilibrium sorption coupled to transformation and/or irreversible sorption processes, could well reproduce the concentration course of the sorbates. Results suggest that the amounts transformed/degraded and irreversibly bound were higher for the soil than for the clay mineral. In the second part, quantum chemical calculations were performed on aniline and 1-naphthylamine interacting with acetic acid, acetamide, imidazole, and phenol as models of functional groups present in humic substances. Molecular modeling showed that formation of hydrogen bonds is the dominating binding mechanism in all modeled complexes, which are energetically very similar between aniline and 1-naphthylamine.

Keywords

Kinetic sorption processes Mathematical modeling Analytical solutions Quantum chemical modeling 

References

  1. Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system Turbomole. Chemical Physics Letters, 162, 165–169.CrossRefGoogle Scholar
  2. Ainsworth, C. C., McVeety, B. D., Smith, S. C., & Zachara, J. M. (1991). Transformation of 1-aminonaphthalene at the surface of smectite clays. Clays and Clay Minerals, 39, 416–427.CrossRefGoogle Scholar
  3. Allen-King, R. M., Grathwohl, P., & Ball, W. P. (2002). New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Advances in Water Resources, 25, 985–1016.CrossRefGoogle Scholar
  4. Aquino, A. J. A., Tunega, D., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2002). Solvent effects on hydrogen bonds—a theoretical study. The Journal of Physical Chemistry. A, 106, 1862–1871.CrossRefGoogle Scholar
  5. Aquino, A. J. A., Tunega, D., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2007). Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties—a theoretical study. European Journal of Soil Science, 58, 889–899.CrossRefGoogle Scholar
  6. Aquino, A. J. A., Tunega, D., Pašalić, H., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2008). The thermodynamic stability of hydrogen-bonded and cation-bridged complexes of humic acid models—a theoretical study. Chemical Physics, 349, 69–76.CrossRefGoogle Scholar
  7. Barrow, N. J., & Shaw, T. C. (1997). Effects on solution: soil ratio and vigour of shaking on the rate of phosphate adsorption by soil. Soil Science, 119, 167–177.CrossRefGoogle Scholar
  8. Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.CrossRefGoogle Scholar
  9. Brusseau, M. L., Jessup, R. E., & Rao, S. C. (1991). Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environmental Science & Technology, 25, 134–142.CrossRefGoogle Scholar
  10. Crank, J. (1979). The mathematics of diffusion (2nd ed.). Oxford: Oxford University Press.Google Scholar
  11. Delle Site, A. (2001). Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data, 30, 187–439.CrossRefGoogle Scholar
  12. Dixon, J. B., & Schulze, D. G. (2002). Soil mineralogy with environmental applications. Madison: Soil Science Society of America.Google Scholar
  13. Fábrega, J. R., Jafvert, C. T., Li, H., & Lee, L. S. (1998). Modeling short-term soil-water distribution of aromatic amines. Environmental Science & Technology, 32, 2788–2794.CrossRefGoogle Scholar
  14. Gevao, B., Semple, K. T., & Jones, K. C. (2000). Bound pesticide residues in soils: A review. Environmental Pollution, 108, 3–14.CrossRefGoogle Scholar
  15. Ghabbour, E. A., & Davis, G. (2000). Humic substances—versatile components of plants, soils and water. Cambridge: Royal Society of Chemistry.Google Scholar
  16. Grathwohl, P. (1990). Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on KOC correlations. Environmental Science & Technology, 24, 1687–1693.CrossRefGoogle Scholar
  17. Grathwohl, P. (1998). Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Norwell: Kluwer.Google Scholar
  18. Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.CrossRefGoogle Scholar
  19. Huang, W., Young, T. M., Schlautman, M. A., Yu, H., & Weber, W. J., Jr. (1997). A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environmental Science & Technology, 31, 1703–1710.CrossRefGoogle Scholar
  20. Ilic, M., Koglin, E., Pohlmeier, A., Narres, H. D., & Schwuger, M. J. (2000). Adsorption and polymerization of aniline on Cu(II)-montmorillonite: Vibrational spectroscopy and ab initio calculation. Langmuir, 16, 8946–8951.CrossRefGoogle Scholar
  21. Karickhoff, S. W. (1980). Sorption kinetics of hydrophobic pollutants in natural sediments. Chapter 11. In R. A. Baker (Ed.), Contaminants and sediments. Analysis, chemistry, biology (Vol. 2, pp. 193–205). Ann Arbor, Michigan: Ann Arbor Science.Google Scholar
  22. Karickhoff, S. W., & Morris, K. R. (1985). Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environmental Toxicology and Chemistry, 4, 469–479.CrossRefGoogle Scholar
  23. Kile, D. E., Wershaw, R. L., & Chiou, C. T. (1999). Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environmental Science & Technology, 33, 2053–2056.CrossRefGoogle Scholar
  24. Klamt, A., & Schüürmann, G. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society—Perkin Transactions, II, 799–805.CrossRefGoogle Scholar
  25. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.CrossRefGoogle Scholar
  26. Lee, L. S., Nyman, A. K., Li, H., Nyman, M. C., & Jafvert, C. (1997). Initial sorption of aromatic amines to surface soils. Environmental Toxicology and Chemistry, 16, 1575–1582.CrossRefGoogle Scholar
  27. Li, H., Lee, L. S., Fabrega, J. R., & Jafvert, C. T. (2001). Role of pH in partitioning and cation exchange of aromatic amines on water-saturated soils. Chemosphere, 44, 627–635.CrossRefGoogle Scholar
  28. Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60, 267–312.CrossRefGoogle Scholar
  29. Manes, M. (1998). Activated carbon adsorption fundamentals. In R. Meyers (Ed.), Encyclopedia of environmental analysis and remediation (pp. 26–67). New York: Wiley.Google Scholar
  30. Nascimento, G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004). Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385.CrossRefGoogle Scholar
  31. Nkedi-Kizza, P., Shinde, D., Savabi, M. R., Ouyang, Y., & Nieves, L. (2006). Sorption kinetics and equilibria of organic pesticides in carbonatic soils from South Florida. Journal of Environmental Quality, 35, 268–276.CrossRefGoogle Scholar
  32. Ogwada, R. A., & Sparks, D. L. (1986). Kinetics of ion exchange on clay minerals and soils: II. Elucidation of rate-limiting steps. Soil Science Society of America Journal, 50, 1162–1164.CrossRefGoogle Scholar
  33. Parker, A., & Rae, J. E. (1998). Environmental interactions of clays. Berlin: Springer.Google Scholar
  34. Parris, G. E. (1980). Covalent binding of aromatic amines to humates. 1. Reactions with carbonyls and quinones. Environmental Science & Technology, 14, 1099–1106.CrossRefGoogle Scholar
  35. Pignatello, J. J. (1989). Sorption dynamics of organic compounds in soils and sediments. In B. L. Sawhney & K. Brown (Eds.), Reactions and movements of organic chemicals in soils (2nd ed., pp. 45–80). (SSSA Special Publication 22) SSSA: Madison.Google Scholar
  36. Pignatello, J. J. (2000). The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy, 69, 1–73.CrossRefGoogle Scholar
  37. Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100, 5829–5835.CrossRefGoogle Scholar
  38. Schwarzenbach, R. P., & Westall, J. (1981). Transport of nonpolar organic compounds from subsurface water to groundwater, Laboratory sorption studies. Environmental Science & Technology, 15, 1360–1367.CrossRefGoogle Scholar
  39. Selim, H. M., Davidson, J. H., & Mansell, R. S. (1976). Evaluation of a two site adsorption desorption model for describing solute transport in soils. In Proceedings summer computer simulation conference (pp. 444–448), Washington D.C.Google Scholar
  40. Sparks, D. L. (1989). Kinetics of soil chemical processes. San Diego: Academic Press.Google Scholar
  41. Tunega, D., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2000). Interaction of acetate anion with hydrated Al3+ cation: A theoretical study. The Journal of Physical Chemistry A, 104, 6824–6833.CrossRefGoogle Scholar
  42. Vogt, P. F., & Geralis, J. J. (1985). Aromatic amines. In: Ullmann´s encyclopedia of industrial chemistry, vol. A 2 (pp. 37–56). Weinheim: VCH.Google Scholar
  43. Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44, 1711–1721.CrossRefGoogle Scholar
  44. Weber, E. J., Spidle, D. L., & Thorn, K. A. (1996). Covalent binding of aniline to humic substances. 1. Kinetic studies. Environmental Science & Technology, 30, 2755–2763.CrossRefGoogle Scholar
  45. Zachara, J. M., Ainsworth, C. C., Cowan, C. E., & Thomas, B. L. (1987). Sorption of binary mixtures of aromatic nitrogen heterocyclic compounds on subsurface materials. Environmental Science & Technology, 21, 397–402.CrossRefGoogle Scholar
  46. Zeldovich, Y. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physicochimica U.R.S.S, 1, 449–464.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sabine Klepsch
    • 1
    • 2
  • Adelia J. A. Aquino
    • 1
    • 3
  • Ursula Haas
    • 2
  • Daniel Tunega
    • 1
    • 3
  • Georg Haberhauer
    • 2
  • Martin H. Gerzabek
    • 1
  • Hans Lischka
    • 3
  1. 1.Institute of Soil ResearchUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Health and Environment DepartmentAIT Austrian Institute of TechnologySeibersdorfAustria
  3. 3.Institute for Theoretical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations