Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Role of Leaky Boreholes in the Contamination of a Regional Confined Aquifer. A Case Study: The Campo de Cartagena Region, Spain

  • 218 Accesses

  • 15 Citations

Abstract

Poorly constructed wells (leaky or without a gravel pack) and abandoned wells can behave as conduits for the interconnection of aquifers at different depths and facilitate the transfer of contaminants between these aquifers. This is the case with Campo de Cartagena (SE Spain) where the primary land use is intensive irrigated agriculture, along with a high density of wells. The unconfined aquifer is heavily impacted by a high concentration of nitrate associated with agricultural activities. The present work provides a methodological approach to evaluate the impact of the unconfined aquifer on the water quality of the confined aquifer caused by leaky wells in high-density areas of production wells. The research approach included the use of geochemical and isotopic tools; specifically, nitrate was used as a tracer for evaluating the impact, and the code MIX_PROGRAM was used for mixing calculations. Results show an increase of the impact of the unconfined aquifer on the confined aquifer along the groundwater flow direction toward the coast, although this general pattern is controlled by local factors (pumping, intensity of agricultural practices, density of wells, and groundwater residence time).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Adar, E. M., & Nativ, R. (2000). Use of hydrochemistry and isotopes in a mixing-cell to quantify the relative contribution of multiple-source contaminants to seepage from fractured chalk aquitard. IAHS Publ, 262, 315–320.

  2. Altman, S. J., & Parizek, R. R. (1995). Dilution of nonpoint-source nitrate in groundwater. Journal of Environmental Quality, 24, 707–718.

  3. Banner, J. L., Wasserburg, G. J., Dobson, P. F., Carpenter, A. B., & Moore, C. H. (1989). Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochimica et Cosmochimica Acta, 53, 383–398.

  4. Boulton, N. S. (1963). Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. In: Proceedings of Institution of Civil Engineers, 26(6693), 469–482.

  5. CARM. (2008). Consejería de Agricultura y Agua de la Región de Murcia. Agrarian Statistics Data. http://www.carm.es.

  6. Carrera, J., Vazquez-Suñé, E., Catillo, O., & Sánchez-Vila, X. (2004). A methodology to compute mixing ratios with uncertain end-members. Water Resources Research, 40, W12101. doi:10.1029/2003WR002263.

  7. Carter, J. T., Gotkowitz, M., Anderson, M. P. (2007). Vertical Hydraulic connection between a perched carbonate aquifer and an underlying regional aquifer. In: Proceedings of 2007 GSA Denver Annual Meeting.

  8. Candela, L. (2000). Groundwater pollution from mineral fertilizers and pesticides in Spain. Hydrogeologie, 3, 85–91.

  9. Custodio, E., & Herrera, C. (2000). Use of the ratio Cl/Br as a hydrogeochemical tracer in groundwater hydrology (in Spanish). Boletín Geologico y Minero, 111(4), 49–68.

  10. Frind, E. O., Muhammad, D. S., & Molson, J. W. (2002). Delineation of three dimensional well capture zones for complex multi-aquifer systems. Ground Water, 40(6), 586–598.

  11. Frisch, J. (1987). Pollution des eaux souterranines par les nitrates: l´impact sur l´agriculture moderne Europäische Konferenz. Einflüesse der Landwirtschaft auf die Wassenrressourcen. Folgen und zukünftige Entwincklugen, Berlin, pp. 103–123.

  12. García-Pintado, J., Martínez-Mena, M., Barberá, G. G., Albaladejo, J., & Castillo, V. (2007). Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor Spain. Science of the Total Environment, 373, 220–239.

  13. Guimerà, J. (1998). Anomalously high nitrate concentrations in ground water. Ground Water, 36(2), 275–282.

  14. Hantush, M. S. (1960). Modification of the theory of leaky aquifers. Journal of Geophysical Research, 65(11), 3713–3725.

  15. Hantush, M. S., & Jacob, C. E. (1955). Non-steady radial flow in an infinite leaky aquifer. American Geophysical Union Transactions, 6, 95–100.

  16. IGME. (1994). Las aguas subterráneas del Campo de Cartagena (Murcia). IGME, 62 pp.

  17. Jiménez-Martínez, J., & Custodio, E. (2008). Deuterium excess in rain and in recharge to aquifers in Circum-Mediterranean area and Spanish Mediterranean coast (in Spanish). Boletín Geologico y Minero, 119(1), 21–32.

  18. Jiménez-Martínez, J., García-Aróstegui, J. L., Aragón, R., Candela, L. (2010). A quasi 3D geological model of the Campo de Cartagena, SE Spain: Hydrogeological implications. Geologica Acta (in press)

  19. Korom, S. F. (1992). Natural denitrification in the saturated zone: A review. Water Resources Research, 28(6), 1657–1668.

  20. Lacombe, S., Sudicky, E. A., Frape, S. K., & Unger, A. J. A. (1995). Influence of a leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resources Research, 31(8), 1871–1882.

  21. Larsen, D., Gentry, R. W., & Solomon, D. K. (2003). The geochemistry and mixing of leakage in a semi-confined aquifer at a municipal well field, Memphis, Tennessee, USA. Applied Geochemistry, 18, 1043–1063.

  22. Lu, H. Y., Liu, T. K., Chen, W. F., Peng, T. R., Wang, C. H., Tsai, M. H., et al. (2008). Use of geochemical modeling to evaluate the hydraulic connection of aquifers: A case study from Chianan Plain, Taiwan. Hydrogeology Journal, 16, 139–154.

  23. Massmann, G., Tichomirowa, M., Merz, C., & Pekdeger, A. (2003). Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). Journal of Hydrology, 278, 231–243.

  24. MIMAN. (2000). Libro Blanco del Agua en España. Spanish Ministry for the Environment.

  25. Neuman, S. P., & Witherspoon, P. A. (1969). Theory of flow in a confined two aquifer system. Water Resources Research, 5(4), 803–816.

  26. Parkhurst, D. L., & Appelo, C. J. L. (1999). User’s guide to PHREEQC (version 2)-A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Service. Water Resources Investigation Report 99-4259, Denver.

  27. Pitkänen, P., Löffman, J., Koskinen, L., Leino-Forsman, H., & Snellman, M. (1999). Application of mass-balance and flow simulation calculations to interpretation of mixing at Äspö, Sweden. Applied Geochemistry, 14, 893–905.

  28. Pulido-Bosch, A., Bensi, S., Molina, L., Vallejos, A., Calaforra, J. M., & Pulido-Leboeuf, P. (2000). Nitrates as indicators of aquifer interconnection. Application to the Campo de Dalias (SE-Spain). Environmental Geology, 39(7), 791–799.

  29. Roberston, W. D., & Schiff, S. L. (2008). Persistent elevated nitrate in riparian zone aquifer. Journal of Environmental Quality, 37, 669–679.

  30. Robertson, W. D., Russell, B. M., & Cherry, J. A. (1996). Attenuation of nitrate in aquitard sediments of Southern Ontario. Journal of Hydrology, 180(1–4), 267–281.

  31. Rodríguez Estrella, T. (2000). Physical, chemical and biological changes induced by waters from the Tage-Segura canal in the hydrogeological unit of the Campo de Carthagena and in Mar Menor laguna (Murcia Province, Spain). Hydrogéologie, 3, 23–37.

  32. Ronen, D., & Margaritz, M. (1985). High concentrations of solutes at upper part of the saturated zone (water table) of a deep aquifer under sewage-irrigated land. Journal of Hydrology, 80, 311–323.

  33. Salama, R. B. (2005). Interconnectivity between the superficial aquifer and the deep confined aquifers of the Gnangara Mound, Western Australia. Water, Air, and Soil Pollution, 5, 27–44.

  34. Starr, R. C., & Gillhma, R. W. (1993). Denitrification and organic carbon availability in two aquifers. Ground Water, 31(6), 934–947.

Download references

Acknowledgements

This work has been developed under the framework of the CGL-2004-05963-C04-01 and CGL2007-66861-C04-03 research projects, financed by Ministry of Science and Innovation (Spain). It also is included within the 08225/PI/08 research project financed by “Programa de Generación del Conocimiento Científico de Excelencia” of Fundación Seneca, Región de Murcia (II PCTRM 2007-10). Gratitude is expressed to the Geological Survey of Spain (IGME) and to K. J. Wallis for her assistance in the revision of the text.

Author information

Correspondence to J. Jiménez-Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiménez-Martínez, J., Aravena, R. & Candela, L. The Role of Leaky Boreholes in the Contamination of a Regional Confined Aquifer. A Case Study: The Campo de Cartagena Region, Spain. Water Air Soil Pollut 215, 311–327 (2011). https://doi.org/10.1007/s11270-010-0480-3

Download citation

Keywords

  • Aquifer interconnection
  • Leaky borehole
  • Mixing rate
  • Campo de Cartagena