Water, Air, & Soil Pollution

, Volume 215, Issue 1–4, pp 239–249 | Cite as

Use of Granular Bentonite in the Removal of Mercury (II), Cadmium (II) and Lead (II) from Aqueous Solutions

  • Yolanda Fernández-Nava
  • Mihaela Ulmanu
  • Ildiko Anger
  • Elena Marañón
  • Leonor Castrillón


Granular bentonite has been assessed regarding its capacity to remove Hg(II), Cd(II) and Pb(II) from aqueous solutions. Sorption capacities, kinetics and the dependence of the sorption process on pH were determined. Fractional power, pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were used to model the kinetics of metal adsorption. The pseudo-second-order model showed the best fit to experimental data. Different two-parameter sorption isotherm models (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich) were used to fit the equilibrium data. Freundlich's isotherm model gave the best fit to experimental data. The selectivity of granular bentonite towards these metals is Pb(II) > Cd(II) > Hg(II). The adsorption capacities of granular bentonite towards the metals expressed in milligramme metal per gramme granular bentonite are 19.45, 13.05 and 1.7 for Pb(II), Cd(II) and Hg(II), respectively (for an initial concentration of 100 mg metal/L).


Granular bentonite Mercury Cadmium Lead Adsorption kinetics Isotherm 


  1. Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na–montmorillonite. Effect of pH and organic substances. Water Research, 37(7), 1619–1627.CrossRefGoogle Scholar
  2. Ahmad, A., Rafatullahb, M., Sulaimanb, O., Hakimi Ibrahima, M., Chiia, Y. Y., & Siddique, B. M. (2009). Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination, 247, 636–646.CrossRefGoogle Scholar
  3. Ahmad-Zaini, M. A., Okayama, R., & Machida, M. (2009). Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. Journal of Hazardous Materials, 170, 1119–1124.CrossRefGoogle Scholar
  4. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219–243.CrossRefGoogle Scholar
  5. Basha, S., & Murthy, Z. V. P. (2007). Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica. Process Biochemistry, 42, 1521–1529.CrossRefGoogle Scholar
  6. Behnamfard, A., & Salarirad, M. M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. Journal of Hazardous Materials, 170, 127–133.CrossRefGoogle Scholar
  7. Brown, P. A., Giel, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916.CrossRefGoogle Scholar
  8. Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50, 1095–1105.CrossRefGoogle Scholar
  9. Eren, E. (2009). Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. Journal of Hazardous Materials, 165, 63–70.CrossRefGoogle Scholar
  10. Ferguson, J. E. (1990). The heavy elements: chemistry, environmental impact and health effects. Oxford, UK: Pergamon Press Inc.Google Scholar
  11. Gonzales, E., Pradas, M., Villafranca Sanchez, F., Canton Cruz, M., Socias Viciana, M., & Fernandez Perez, M. (1994). Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. Journal of Chemical Technology and Biotechnology, 59, 289–293.CrossRefGoogle Scholar
  12. Guerra, D. L., Ribeiro Viana, R., & Airoldi, C. (2008). Adsorption of mercury cation on chemically modified clay. Materials Research Bulletin, 44, 485–491.CrossRefGoogle Scholar
  13. Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160, 576–581.CrossRefGoogle Scholar
  14. Ho, Y. S., & McKay, G. (1999a). The sorption of lead (II) ions on peat. Water Research, 33(2), 578–584.CrossRefGoogle Scholar
  15. Ho, Y. S., & McKay, G. (1999b). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  16. Hsieh, C. T., & Teng, H. (2000). Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon, 38, 863–869.CrossRefGoogle Scholar
  17. Huang, X., Liao, X., & Shi, B. (2009). Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. Journal of Hazardous Materials, 170, 1141–1148.CrossRefGoogle Scholar
  18. Jiang, M.-Q., Wang, Q.-P., Jin, X.-Y., & Chen, Z.-L. (2009). Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. Journal of Hazardous Materials, 170, 332–339.CrossRefGoogle Scholar
  19. Kadirvelu, K., Goel, J., & Rajagopal, C. (2008). Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 153, 502–507.CrossRefGoogle Scholar
  20. Kapoor, A., & Viraraghavan, T. (1998). Use of immobilized bentonite in removal of heavy metals from wastewater. Journal of Environmental Engineering, 124, 1020–1024.CrossRefGoogle Scholar
  21. Kaya, A., & Özen, A. H. (2004). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, B125, 183–189.Google Scholar
  22. Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chemical Engineering Journal, 145, 489–495.CrossRefGoogle Scholar
  23. Khan, S. A., Rehman, R., & Khan, M. A. (1994). Sorption of cesium on bentonite. Waste Management, 14(7), 629–642.CrossRefGoogle Scholar
  24. Khan, S. A., Rehman, R., & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271–282.CrossRefGoogle Scholar
  25. Lakatos, J., Brown, S. D., Snape, C. E. (1998). High sulphur coals and oxidised high rank coals as efficient sorbents for mercury removal from industrial waste solutions. Innovations in Mineral and Coal Processing. In Suna Atak, Güven Önal and Mehmet S. Çelik (Eds.), Proceedings of the 7th International Mineral Processing Symposium Istanbul (pp. 755–759).Google Scholar
  26. McKay, G., & Porter, J. F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc onto peat. Journal of Chemical Technology and Biotechnology, 69, 309–320.CrossRefGoogle Scholar
  27. Mellah, A., & Chegrouche, S. (1997). The removal of zinc from aqueous solution by natural bentonite. Water Research, 31(3), 621–629.CrossRefGoogle Scholar
  28. Namasivayam, C., & Yamuna, R. T. (1992). Removal of Congo Red from aqueous solution by biogas waste slurry. Journal of Chemical Technology and Biotechnology, 53, 153–157.Google Scholar
  29. Nassem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982–3986.CrossRefGoogle Scholar
  30. Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15, 383–394.Google Scholar
  31. Ozcan, A. S., Gök, O., & Ozcan, A. (2009). Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161, 499–509.CrossRefGoogle Scholar
  32. Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2009). Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170, 969–977.CrossRefGoogle Scholar
  33. Raji, C., & Anirudhan, S. (1998). Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Research, 32(12), 3772–3780.CrossRefGoogle Scholar
  34. Ricou, P., Lecuyer, I., & Le Cloirec, P. (1998). Influence of pH on the removal of heavy metallic cations by fly ash in aqueous solutions. Environmental Technology, 19, 1005–1016.CrossRefGoogle Scholar
  35. Saprykin, A. V., & Vizhin, V. V. (1994). Unusual dependence of mercury adsorption by montmorillonite on the small concentrations of the metal. Fresenius' Environmental Bulletin, 3, 207–211.Google Scholar
  36. Sengupta, S., & Bhattacheryya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 46–58.CrossRefGoogle Scholar
  37. Silva da Rocha, M., Iha, K., Faleiros, A. C., Corat, E. J., & Vázquez Suárez-Iha, M. E. (1998). Henry's law as a limit for an isotherm model based on a statistical mechanics approach. Journal of Colloid and Interface Science, 208, 211–215.CrossRefGoogle Scholar
  38. Ulmanu, M., Anger, I., Fernandez, Y., Castrillon, L., & Maranon, E. (2008). Batch chromium (VI), cadmium (II) and lead (II) removal from aqueous solution by horticultural peat. Water, Air, and Soil Pollution, 194, 209–216.CrossRefGoogle Scholar
  39. Ulmanu, M., Segarceanu, T., Vasiliu, C., Anger, I. (1996). Removal of copper from diluted aqueous solutions by adsorbent and ion exchange materials. Ion exchange developments and applications, SCI Conference IEX'96, U.K., (pp. 151–159).Google Scholar
  40. Ulmanu, M., Velea, T., Anger, I., & Teodorescu, R. (2002). Romanian volcanic tuff—a promising material for some heavy metals uptake from aqueous solutions. Extraction and processing division meeting. Recycling waste treatment in mineral metal processing. Technical and economic aspect (pp. 735–743). Sweden: Lulea.Google Scholar
  41. Veli, S., & Ayüd, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149, 226–233.CrossRefGoogle Scholar
  42. Viraraghavan, T., & Kapoor, A. (1994). Adsorption of mercury from wastewater by bentonite. Applied Clay Science, 9, 31–49.CrossRefGoogle Scholar
  43. Wang, J. S., Huang, P. M., Hammer, U. T., & Liaw, W. K. (1985). Influence of selected cation and anion species on the adsorption of mercury (II) by montmorillonite. Applied Clay Science, 1, 125–132.CrossRefGoogle Scholar
  44. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division American Society Engineering, 89, 31–51.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yolanda Fernández-Nava
    • 1
  • Mihaela Ulmanu
    • 2
  • Ildiko Anger
    • 2
  • Elena Marañón
    • 1
  • Leonor Castrillón
    • 1
  1. 1.Chemical Engineering and Environmental Technology Department, University Technology Institute of Asturias (IUTA)University of Oviedo, Gijón CampusGijónSpain
  2. 2.National R&D Institute for Nonferrous and Rare Metals, IMNRPantelimonRomania

Personalised recommendations