Water, Air, & Soil Pollution

, Volume 215, Issue 1–4, pp 221–227 | Cite as

Metal Uptake by Spontaneous Vegetation in Acidic Mine Tailings from a Semiarid Area in South Spain: Implications for Revegetation and Land Management

  • Héctor M. Conesa
  • Ángel Faz


Tailings are frequently a source of pollution in mining areas due to the spread of metals from their bare surfaces via wind or runoff water. Phytostabilization is an interesting and low-cost option to decrease environmental risks in these sites. In this study, an acidic mine tailing (pH 3–4) located in a semiarid area in Southeast Spain and the spontaneous vegetation which grow on were investigated. Soil samples were taken to characterize metal contamination, and three plant species, Lygeum spartum, Piptatherum miliaceum, and Helichrysum decumbens, were sampled in order to determine plant uptake of metals. The rhizosphere pH of H. decumbens was measured to be 6.7, which was significantly higher than the bulk soil (pH 3). The electrical conductivity values were around 2–5 dS m−1. Total metal concentrations in soil were high (9,800 mg kg−1 for Pb and 7,200 mg kg−1 for Zn). DTPA-extractable Zn and Pb were 16% and 19% of the total amount, respectively. The three selected plant species accumulated around 2–5 mg kg−1 Cu in both shoots and roots. Zn concentration was 100 mg kg−1 in P. miliaceum roots. DTPA-extractable Zn was positively correlated with Zn plant uptake. These plant species demonstrated to grow well in acid tailings taking up only low concentrations of metals and therefore are good candidates to perform further phytostabilization works.


Mining contamination Semiarid climate Phytostabilization Plant uptake 



The authors thank Fundacion Seneca of Comunidad Autónoma de la Región de Murcia for financial support and Gregorio García, Juan Marcos Andreu, and Raquel Arnaldos for their help in sampling. Also, we want to thank Dr. Ripolles for the help in English typing.


  1. BOE (Boletín Oficial del Estado) (2005). REAL DECRETO 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados (BOE no. 15 de 18.01.05), pp. 1833–1843.Google Scholar
  2. Chaignon, V., Bedin, F., & Hinsinger, P. (2002). Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil. Plant and Soil, 243(2), 219–228.CrossRefGoogle Scholar
  3. Chaney, R. L. (1989). Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food-chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the vadose zone (pp. 140–158). Berlin: Springer.Google Scholar
  4. Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Tolerant plant species to heavy metals that grow at mining tailings in the semiarid Cartagena–La Union mining district (SE Spain). The Science of the Total Environment, 36(1), 1–11.Google Scholar
  5. Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2007a). Growth of Lygeum spartum in acid mine tailings: Response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 145(3), 700–707.CrossRefGoogle Scholar
  6. Conesa, H. M., Faz, Á., & Arnaldos, R. (2007b). Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union mining district (SE Spain). Chemosphere, 66(1), 38–44.CrossRefGoogle Scholar
  7. Conesa, H. M., García, G., Faz, Á., & Arnaldos, R. (2007c). Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena–La Unión mining district (SE Spain) and their interest for further revegetation purposes. Chemosphere, 68(6), 1180–1185.CrossRefGoogle Scholar
  8. Conesa, H. M., Pérez-Chacón, J. A., Arnaldos, R., Moreno-Caselles, J., & Faz, Á. (2010). In situ heavy metal accumulation in lettuce growing near a former mining waste disposal area: Implications for agricultural management. Water, Air, and Soil Pollution, 208(1–4), 377–383.CrossRefGoogle Scholar
  9. Diaz, G., & Honrubia, M. (1993). Respuestas de crecimiento del albardín (Lygeum spartum L.) a la inoculación con hongos micorrícicos y a la fertilización fosforada. Cryptogamie. Mycologie, 14, 117–125.Google Scholar
  10. Duchaufour Ph. (1970). Précis de Pedologie. París: Masson y Cie, p. 481.Google Scholar
  11. Fitz, W. J., & Wenzel, W. W. (2002). As transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnolology, 99(3), 259–278.CrossRefGoogle Scholar
  12. García-García, C. (2004). Impacto y riesgo medioambiental en los residuos minerometalúrgicos de la Sierra de Cartagena-La Unión, PhD thesis, Universidad Politécnica de Cartagena, Cartagena, Spain.Google Scholar
  13. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248(1–2), 43–59.CrossRefGoogle Scholar
  14. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.CrossRefGoogle Scholar
  15. M.H.S.P.E. (Ministry of Housing, Spatial Planning and Environment) (2000). Netherlands. Circular on target values and intervention values for soil remediation. Ministry of Housing, Spatial Planning and Environment 4-2-2000.Google Scholar
  16. Macnair, M. R. (1987). Heavy metal tolerance in plants: A model evolutionary system. Trends in Ecology & Evolution, 2(12), 354–359.CrossRefGoogle Scholar
  17. Martínez-Orozco, J. M., Valero-Huete, F., & González-Alonso, S. (1993). Environmental problems and proposals to reclaim the areas affected by mining exploitations in the Cartagena mountains (southeast Spain). Landscape and Urban Planning, 23(3–4), 195–207.CrossRefGoogle Scholar
  18. Martínez-Sánchez, M.J., Pérez-Sirvent, C. (2007). Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Universidad de Murcia. Región de Murcia, Consejería de Desrrollo Sostenible y Ordenación del Territorio. Murcia, Spain.Google Scholar
  19. Martos-Miralles, P., Sansano Sánchez, A., Baños Páez, P., Navarro Cano, J. A., & Méndez Pérez, T. (2001). Medio Ambiente y Empleo en la Sierra Minera de Cartagena–La Unión. La Unión (Murcia): Edita Fundación Sierra Minera. 256 pp.Google Scholar
  20. Mattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378.CrossRefGoogle Scholar
  21. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277–282.CrossRefGoogle Scholar
  22. Melendo, M., Benítez, E., & Nogales, R. (2002). Assessment of the feasibility of endogeous Mediterranean species for phytoremediation of Pb-contaminated areas. Fresenius’ Environmental Bulletin, 11, 1105–1109.Google Scholar
  23. Mendez, M. O., & Maier, R. M. (2008a). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283.CrossRefGoogle Scholar
  24. Mendez, M. O., & Maier, R. M. (2008b). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science & Biotechnology, 7(1), 47–59.CrossRefGoogle Scholar
  25. National Research Council (2003). Bioavailability of Contaminants in soils and sediments: Process, tools and applications. Washington: The National Academies. Retrieved 20 April 2006 from
  26. Norvell, W. A. (1984). Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Science Society of America Journal, 48, 1285–1292.CrossRefGoogle Scholar
  27. Pratas, J., Prasad, M. N. V., Freitas, H., & Conde, L. (2005). Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. Journal of Geochemical Exploration, 85(3), 99–107.CrossRefGoogle Scholar
  28. Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27(4), 289–300.CrossRefGoogle Scholar
  29. Simon, M., Ortiz, I., Garcıa, I., Fernandez, E., Fernandez, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). The Science of the Total Environment, 242(1–3), 105–115.CrossRefGoogle Scholar
  30. Sims, J.T., Johnson, G.V. (1991). Micronutrients soil tests. In J.J. Mortvedt, F.R. Cox, L.M. Shuman, R.M. Welch (Eds.), Micronutrients in agriculture, 2nd edn. (pp. 427–476). Soil Science Society of America, Book Series no. 4 Inc. Madison, Wisconsin, USA.Google Scholar
  31. Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous wastes. Chemosphere, 41(1–2), 219–228.CrossRefGoogle Scholar
  32. Unterbrunner, R., Wieshammer, G., Hollender, U., Felderer, B., Wieshammer-Zivkovic, M., Puschenreiter, M., et al. (2007). Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant and Soil, 300(1–2), 117–126.CrossRefGoogle Scholar
  33. Wang, Z., Shan, X. Q., & Zhang, S. (2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8), 1163–1171.CrossRefGoogle Scholar
  34. Wei, C. Y., Wang, C., & Yang, L. S. (2009). Characterizing spatial distribution and sources of heavy metals in the soils from mining–smelting activities in Shuikoushan, Hunan Province, China. Journal of Environmental Sciences, 21(9), 1230–1236.CrossRefGoogle Scholar
  35. Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321(1–2), 385–408.CrossRefGoogle Scholar
  36. Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departamento de Ciencia y Tecnología Agraria, Área de Edafología y Química AgrícolaUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Soil Protection Group, Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology, ETH ZürichZürichSwitzerland

Personalised recommendations