Water, Air, & Soil Pollution

, Volume 213, Issue 1–4, pp 121–143

Trace Elements in Soils of Urban Areas



Urban soils are an essential element of the city environment. However, studies on urban soils are scattered in terms of geographical distribution, sampling pattern, analytical dataset, etc. One of the major issues arising from the studies on this ecosystem is the diffusion of its contamination. In cities, in fact, the proximity to humans may cause a serious danger for citizens. In the present study, results from the literature about trace elements in urban soils are presented to compare methodologies and results and to offer a basis for the harmonization of investigation approaches and establishment of remediation thresholds. A total of 153 studies on the urban ecosystem published in the last 10 years were collected and data on trace elements in soils of 94 world cities were compared and discussed. Data highlights the discrepancies among different studies (sampling strategies, analytical procedures) and the extreme variability of urban soils. Most cities are contaminated by one or more trace elements, revealing the environmental relevance of the urban soil system. While Pb is still one of the major concerns in many locations, new contaminants are on the rise and would deserve more attention from the researchers. While in fact some contaminants are almost ubiquitous in world cities and could be used as tracers for urban contamination, some traffic-related elements such as platinum, rhodium, and palladium, whose reactivity and toxicity is still unknown, are becoming of concern. Collation of literature data highlights the need for the harmonization of sampling, analytical, and rendering procedures for regulatory purposes and provides a useful dataset for environmental scientists dealing with the urban ecosystem and for city planners. A sampling design adapted to local urban patterns, a prescribed sampling depth, and a minimum set of elements that deserve to be measured could be the core of a common methodology.


Urban soils Trace elements Contamination Cities 


  1. Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291, 1–32.CrossRefGoogle Scholar
  2. Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer.Google Scholar
  3. Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grčman, H., Davidson, C. M., Hursthouse, A. S., et al. (2007). Metals in particle-size fractions of the soils of five European cities. Environmental Pollution, 152, 73–81.CrossRefGoogle Scholar
  4. Aksoy, A., Hale, W. H. G., & Dixon, J. M. (1999). Capsella bursa-pastoris (L.), Medic. as a biomonitor of heavy metals. Science of the Total Environment, 226, 177–186.CrossRefGoogle Scholar
  5. Al-Chalabi, A. S., & Hawker, D. (2000). Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air, and Soil Pollution, 118, 299–310.CrossRefGoogle Scholar
  6. Alemayehu, T. (2006). Heavy metal concentration in the urban environment of Addis Ababa, Ethiopia. Soil and Sediment Contamination, 15, 591–602.CrossRefGoogle Scholar
  7. Alexandrovskaya, E. I., & Alexandrovskiy, A. L. (2000). History of the cultural layer in Moscow and accumulation of anthropogenic substances in it. Catena, 41, 249–259.CrossRefGoogle Scholar
  8. Al-Khashman, O. A. (2007). Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environmental Geochemistry and Health, 29, 1–10.CrossRefGoogle Scholar
  9. Alloway, B. J. (1995). Heavy metals in soils. UK: Chapman & Hall.Google Scholar
  10. Angelone, M., Masi, U., & Cremisini, C. (2002). Platinum levels in natural and urban soils from Rome and Latium (Italy): Significance for pollution by automobile catalytic converter. Science of the Total Environment, 293, 47–57.CrossRefGoogle Scholar
  11. Awofolu, O. R. (2005). A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of Lagos. Environmental Monitoring and Assessment, 105, 431–447.CrossRefGoogle Scholar
  12. Banat, K. M., Howari, F. M., & Al-Hamad, A. A. (2005). Heavy metals in urban soils of central Jordan: Should we worry about their environmental risks? Environmental Resources, 97, 258–273.CrossRefGoogle Scholar
  13. Bergbäck, B., Johansson, K., & Mohlander, U. (2001). Urban metal flows—A case study of Stockholm. Review and conclusions. Water, Air and Soil Pollution. Focus, 1, 3–24.CrossRefGoogle Scholar
  14. Bertram, M., Graedel, T. E., Rechberger, H., & Spatari, S. (2002). The contemporary European copper cycle: Waste management subsystem. Ecological Economics, 42, 43–57.CrossRefGoogle Scholar
  15. Biasioli, M., & Ajmone-Marsan, F. (2007). Organic and inorganic diffuse contamination in urban soils: The case of Torino (Italy). Journal of Environmental Monitoring, 9, 862–868.CrossRefGoogle Scholar
  16. Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment, 356, 154–164.CrossRefGoogle Scholar
  17. Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36, 70–79.CrossRefGoogle Scholar
  18. Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 223–248.CrossRefGoogle Scholar
  19. Bityukova, L., Shogenova, A., & Birke, M. (2000). Urban geochemistry: A study of elements distribution in the soils of Tallin (Estonia). Environmental Geochemistry and Health, 22, 173–193.CrossRefGoogle Scholar
  20. Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Science of the Total Environment, 166, 137–148.CrossRefGoogle Scholar
  21. Bretzel, F., & Calderisi, M. (2006). Metal contamination in urban soils of coastal Tuscany (Italy). Environmental Monitoring and Assessment, 118, 319–335.CrossRefGoogle Scholar
  22. Brown, R. W., Gonzales, C., Hooper, M. J., Bayat, A. C., Fornerette, A. M., McBride, T. J., et al. (2008). Soil lead (Pb) in residential transects through Lubbock, Texas: A preliminary assessment. Environmental Geochemistry and Health, 30, 541–547.CrossRefGoogle Scholar
  23. Cal-Prieto, M. J., Carlosena, A., Andrade, J. M., Martinez, M. L., Muniategui, S., López-Mahía, P., et al. (2001). Antimony as tracer of the anthropogenic influence on soils and estuarine sediments. Water, Air, and Soil Pollution, 119, 248–333.Google Scholar
  24. Chatterjee, A., & Banerjee, R. N. (1999). Determination of lead and other metals in a residential area of greater Calcutta. Science of the Total Environment, 227, 175–185.CrossRefGoogle Scholar
  25. Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60, 542–551.CrossRefGoogle Scholar
  26. Chirenje, T., Ma, L. Q., Szulczewski, M., Littell, R., Portier, K. M., & Zillioux, E. (2003). Arsenic distribution in Florida urban soils: Comparison between Gainesville and Miami. Journal of Environmental Quality, 32, 109–119.CrossRefGoogle Scholar
  27. Chirenje, T., Ma, L. Q., Reeves, M., & Szulczewski, M. (2004). Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 119, 113–120.CrossRefGoogle Scholar
  28. Chon, H. T., Ahn, J. S., & Jung, M. C. (1998). Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environmental Geochemistry and Health, 20, 77–86.CrossRefGoogle Scholar
  29. Chronopoulos, J., Haidouti, C., Chronopoulou-Sereli, A., & Massas, I. (1997). Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece. Science of the Total Environment, 196, 91–98.CrossRefGoogle Scholar
  30. Cicchella, D., De Vivo, B., & Lima, A. (2003). Palladium and platinum concentration in soils from the Napoli metropolitan area, Italy: Possible effects of catalytic exhausts. Science of the Total Environment, 308, 121–131.CrossRefGoogle Scholar
  31. Cinti, D., Angelone, M., Masi, U., & Cremisini, C. (2002). Platinum levels in natural and urban soils from Rome and Latium (Italy): Significance for pollution by automobile catalytic converter. Science of the Total Environment, 293, 47–57.CrossRefGoogle Scholar
  32. Clark, H. F., Brabander, D. J., & Erdil, R. M. (2006). Sources, sinks and exposure pathways of lead in urban garden soil. Journal of Environmental Quality, 35, 2066–2074.CrossRefGoogle Scholar
  33. Dagan, R., Dubey, B., Bitton, G., & Townsend, T. (2007). Aquatic toxicity of leachates generated from electronic devices. Archives of Environmental Contamination and Toxicology, 53, 168–173.CrossRefGoogle Scholar
  34. Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., da Costa Duarte, A., Díaz-Barrientos, E., et al. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.CrossRefGoogle Scholar
  35. De Carlo, E. H., & Anthony, S. S. (2002). Spatial and temporal variability of trace element concentrations in an urban subtropical watershed, Honolulu, Hawaii. Applied Geochemistry, 17, 475–492.CrossRefGoogle Scholar
  36. de Hollander, A. E. M., & Staatsen, B. A. M. (2003). Health, environment and quality of life: An epidemiological perspective on urban development. Landscape and Urban Planning, 65, 53–62.CrossRefGoogle Scholar
  37. De Kimpe, C. R., & Morel, J. L. (2000). Urban soil management: A growing concern. Soil Science, 165, 31–40.CrossRefGoogle Scholar
  38. De Miguel, E., Jiménez de Grado, M., Llamas, J. F., Martín-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113–122.CrossRefGoogle Scholar
  39. De Miguel, E., Iribarren, I., Chacón, E., Ordóñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.CrossRefGoogle Scholar
  40. Diawara, M. M., Litt, J. S., Unis, D., Alfonso, N., Martinez, L., Crock, J. G., et al. (2006). Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk. Environmental Geochemistry and Health, 28, 297–315.CrossRefGoogle Scholar
  41. Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., et al. (2008). Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water, Air and Soil Pollution, 188, 247–260.CrossRefGoogle Scholar
  42. Drakonakis, K., Rostkowski, K., Rauch, J., Graedel, T. E., & Gordon, R. B. (2007). Metal capital sustaining a North American city: Iron and copper in New Haven, CT. Resources, Conservation and Recycling, 49, 406–420.CrossRefGoogle Scholar
  43. El Khalil, H., Schwartz, C., Elhamiani, O., Kubiniok, J., Morel, J. L., & Boularbah, A. (2008). Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). Journal of Soils and Sediments, 8, 17–22.CrossRefGoogle Scholar
  44. Elless, M. P., Bray, C. A., & Blaylock, M. J. (2007). Chemical behavior of residential lead in urban yards in the United States. Environmental Pollution, 148, 291–300.CrossRefGoogle Scholar
  45. Ely, J. C., Neal, C. R., Kulpa, C. F., Schneegurt, M. A., Seidler, J. A., & Jain, J. C. (2001). Implications of platinum-group element accumulation along US roads from catalytic-converter attrition. Environmental Science and Technology, 35, 3816–3822.CrossRefGoogle Scholar
  46. Environment Agency. (2002). The contaminated land exposure assessment (CLEA) model: Technical basis and algorithms. Bristol: DEFRA.Google Scholar
  47. European Commission. (2006). Thematic strategy for soil protection. COM(2006)231 final, 22 September 2006. Brussels, Belgium.Google Scholar
  48. European Environment Agency. (2006). Urban sprawl in Europe. The ignored challenge. EEA Report, October 2006 Copenhagen, Denmark.Google Scholar
  49. Fang, F., Wang, Q., & Li, J. (2004). Urban environmental mercury in Changchun, a metropolitan city in North-eastern China: Source, cycle and fate. Science of the Total Environment, 330, 159–170.CrossRefGoogle Scholar
  50. Figueiredo, A. M. G., Enzweiler, J., Camargo, S. P., Sigolo, J. B., Gumiero, F. C., Pavese, A. C., et al. (2009). Metal contamination in urban park soils of Sao Paulo. Journal of Radioanalytical and Nuclear Chemistry, 280, 419–425.CrossRefGoogle Scholar
  51. Finster, M. E., Gray, K. A., & Binns, H. J. (2004). Lead levels of edibles grown in contaminated residential soils: A field survey. Science of the Total Environment, 320, 245–257.CrossRefGoogle Scholar
  52. Fritsche, J., & Meisel, T. (2004). Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICP-MS. Science of the Total Environment, 325, 145–154.CrossRefGoogle Scholar
  53. Gabriel, M. C., Williamson, D. G., Brooks, S., Zhang, H., & Lindberg, S. (2005). Spatial variability of mercury emissions from soils in a southeastern US urban environment. Environmental Geology, 48, 955–964.CrossRefGoogle Scholar
  54. Gbadegesin, A., & Olabode, M. A. (2000). Soil properties in the metropolitan region of Ibadan, Nigeria: Implications for the management of the urban environment of developing countries. The Environmentalist, 20, 205–214.CrossRefGoogle Scholar
  55. Guvenç, N., Alagha, O., & Tuncel, G. (2003). Investigation of soil multi-element composition in Antalya, Turkey. Environment International, 29, 631–640.CrossRefGoogle Scholar
  56. Higgs, F. J., Mielke, H. W., & Brisco, M. (1999). Soil lead at elementary public schools: Comparison between school properties and residential neighbourhoods of New Orleans. Environmental Geochemistry and Health, 21, 27–36.CrossRefGoogle Scholar
  57. Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  58. IPIECA—International Petroleum Industry Environmental Conservation Association. (2003). Getting the lead out. Downstream strategies and resources (p. 37). London: IPIECA—International Petroleum Industry Environmental Conservation Association.Google Scholar
  59. Jackson, M. T., Sampson, J., & Prichard, H. M. (2007). Platinum and palladium variations through the urban environment: Evidence from 11 sample types from Sheffield, UK. Science of the Total Environment, 385, 117–131.CrossRefGoogle Scholar
  60. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  61. Johnson, C. C., & Ander, E. L. (2008). Urban geochemical mapping studies: How and why we do them. Environmental Geochemistry and Health, 30, 511–530.CrossRefGoogle Scholar
  62. Johnson, D. L., & Bretsch, J. K. (2002). Soil lead and children's blood lead levels in Syracuse, NY, USA. Environmental Geochemistry and Health, 24, 375–385.CrossRefGoogle Scholar
  63. Kakulu, S. E. (2003). Trace metal concentration in roadside surface soil and tree back: A measurement of local atmospheric pollution in Abuja Nigeria. Environmental Monitoring and Assessment, 89, 233–242.CrossRefGoogle Scholar
  64. Kamavisdar, A., Khanwalkar, S. R., & Patel, R. (2005). Analytical studies on lead pollution in roadside soil samples of Raipur and Bhilai, Chhattisgarh State, India. Communication in Soil Science and Plant Analysis, 36, 2209–2218.CrossRefGoogle Scholar
  65. Kelly, J., & Thornton, I. (1996). Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry, 11, 363–370.CrossRefGoogle Scholar
  66. Kot, F. S., & Matyushkina, L. A. (2002). Distribution of mercury in chemical fractions of contaminated urban soils of Middle Amur, Russia. Journal of Environmental Monitoring, 4, 803–808.CrossRefGoogle Scholar
  67. Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.CrossRefGoogle Scholar
  68. Li, X., & Huang, C. (2007). Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P.R. China. Environmental Geology, 52, 1631–1637.CrossRefGoogle Scholar
  69. Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soil and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.CrossRefGoogle Scholar
  70. Lin, Z., Harsbo, K., Malin, A., & Ulf, Q. (1998). The source and fate of Pb in contaminated soils at the urban area of Falun in central Sweden. Science of the Total Environment, 209, 47–58.CrossRefGoogle Scholar
  71. Lincoln, J. D., Ogunseitan, O. A., Shapiro, A. A., & Saphores, J. D. M. (2007). Leaching assessments of hazardous materials in cellular telephones. Environmental Science and Technology, 41, 2572–2578.CrossRefGoogle Scholar
  72. Linde, M., Bengtsson, H., & Oborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water, Air, and Soil Pollution, 1, 83–101.CrossRefGoogle Scholar
  73. Ljung, K., Selinus, O., & Otabbong, E. (2006). Metals in soils of children's urban environments in the small northern European city of Uppsala. Science of the Total Environment, 366, 749–759.CrossRefGoogle Scholar
  74. Loredo, J., Ordóñez, A., Charlesworth, S., & De Miguel, E. (2003). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25, 307–323.CrossRefGoogle Scholar
  75. Lu, Y., Gong, Z., Zhang, G., & Burghardt, W. (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma, 115, 101–111.CrossRefGoogle Scholar
  76. Luo, W., Lu, Y., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2008). Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere, 72, 797–802.CrossRefGoogle Scholar
  77. Madrid, L., Díaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49, 1301–1308.CrossRefGoogle Scholar
  78. Madrid, L., Díaz-Barrientos, E., Ruiz-Cortés, E., Reinoso, R., Biasioli, M., Davidson, C. M., et al. (2006). Variability in concentrations of potentially toxic elements in urban parks from six European cities. Journal of Environmental Monitoring, 8, 1158–1165.CrossRefGoogle Scholar
  79. Massas, I., Ehaliotis, C., Gerontidis, S., & Sarris, E. (2009). Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): Total and available forms, origin and distribution. Environmental Monitoring and Assessment, 151, 105–116.CrossRefGoogle Scholar
  80. Mellor, A. (2001). Lead and zinc in the Wallsend Burn, an urban catchment in Tyneside, UK. Science of the Total Environment, 269, 49–63.CrossRefGoogle Scholar
  81. Mesilio, L., Farago, M. E., & Thornton, I. (2003). Reconnaissance soil geochemical survey of Gibraltar. Environmental Geochemistry and Health, 25, 1–8.CrossRefGoogle Scholar
  82. Mielke, H. W., Berry, K. J., Mielke, P. W., Powell, E., & Gonzales, C. R. (2005). Multiple metal accumulation as a factor in learning achievement within various New Orleans elementary school communities. Environmental Research, 97, 67–75.CrossRefGoogle Scholar
  83. Ministero dell'Ambiente e della Tutela del Territorio e del Mare (2006). Decreto Legislativo 152/2006. Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88 Supplemento n. 96/L. 14/4/2006Google Scholar
  84. Möller, A., Müller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.CrossRefGoogle Scholar
  85. Morcelli, C. P. R., Figueiredo, A. M. G., Sarkis, J. E. S., Enzweiler, J., Kakazu, M., & Sigolo, J. B. (2005). PGEs and other traffic-related elements in roadside soils from São Paulo, Brazil. Science of the Total Environment, 345, 81–91.CrossRefGoogle Scholar
  86. Morel, Jl, Schwartz, C., Florentin, L., & De Kimpe, C. (2005). Soil management and conservation: Urban soils. In D. Hillel (Ed.), Encyclopaedia of soils in the environment. London: Academic. ISBN 0123485304, 2900 pages.Google Scholar
  87. Morton, O., Puchelt, H., Hernandez, E., & Lounejeva, E. (2001). Traffic-related platinum group elements (PGE), in soils from Mexico City. Journal of Geochemical Exploration, 72, 223–227.CrossRefGoogle Scholar
  88. Morton-Bermea, O., Hernandez, E., Martinez-Pichardo, E., Soler-Arechalde, A. M., Santa-Cruz, R. L., Gonzalez-Hernandez, G., et al. (2009). Mexico City topsoils: Heavy metals vs. magnetic susceptibility. Geoderma, 151, 121–125.CrossRefGoogle Scholar
  89. Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2004). Heavy metals in an urban watershed in Southeastern Michigan. Journal of Environmental Quality, 33, 163–172.CrossRefGoogle Scholar
  90. Nabulo, G., Oryem-Origa, H., & Diamond, M. (2006). Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 101, 42–52.CrossRefGoogle Scholar
  91. Nevin, R. (2007). Understanding international crime trends: The legacy of preschool lead exposure. Environmental Research, 104, 315–336.CrossRefGoogle Scholar
  92. Norra, S., Lanka-Panditha, M., Kramar, U., & Stüben, D. (2006). Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Applied Geochemistry, 21, 2064–2081.CrossRefGoogle Scholar
  93. Norrström, A. C., & Jacks, G. (1998). Concentration and fraction of heavy metals in roadside soils receiving de-icing salts. Science of the Total Environment, 218, 161–174.CrossRefGoogle Scholar
  94. Obernosterer, R., & Brunner, P. H. (2001). Urban metal management: The example of lead. Water, Air and Soil Pollution. Focus, 1, 241–253.CrossRefGoogle Scholar
  95. Öborn, I., & Linde, M. (2001). Solubility and potential mobility of heavy metals in two contaminated urban soils from Stockholm, Sweden. Water, Air and Soil Pollution. Focus, 1, 255–265.CrossRefGoogle Scholar
  96. Olajire, A. A., & Ayodele, E. T. (1997). Contamination of roadside soil and grass with heavy metals. Environment International, 23, 91–101.CrossRefGoogle Scholar
  97. Ordóñez, A., Loredo, J., De Miguel, E., & Charlesworth, S. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Archives of Environmental Contamination and Toxicology, 44, 160–170.CrossRefGoogle Scholar
  98. Palm, V., & Ostlund, C. (1996). Lead and zinc flows from technosphere to biosphere in a city region. Science of the Total Environment, 192, 95–109.CrossRefGoogle Scholar
  99. Paterson, E., Sanka, M., & Clark, L. (1996). Urban soils as pollutant sinks—A case study from Aberdeen, Scotland. Applied Geochemistry, 11, 129–131.CrossRefGoogle Scholar
  100. Peltola, P., & Åström, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25, 397–419.CrossRefGoogle Scholar
  101. Pichtel, J., Sawyer, H. T., & Czarnowska, K. (1997). Spatial and temporal distribution of metals in soils in Warsaw, Poland. Environmental Pollution, 98, 169–174.CrossRefGoogle Scholar
  102. Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Ajmone Marsan, F. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.CrossRefGoogle Scholar
  103. Pouyat, R. V., Yesilonis, I. D., Russell-Anelli, J., & Neerchal, N. K. (2007). Soil chemical and physical properties that differentiate urban land-use and cover type. Soil Science Society of America Journal, 71, 1010–1019.CrossRefGoogle Scholar
  104. Prichard, H. M., Jackson, M. T., & Sampson, J. (2008). Dispersal and accumulation of Pt, Pd and Rh derived from a roundabout in Sheffield (UK): From stream to tidal estuary. Science of the Total Environment, 401, 90–99.CrossRefGoogle Scholar
  105. Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 124–140.CrossRefGoogle Scholar
  106. Ren, H. M., Wang, J. D., & Zhang, X. L. (2006). Assessment of soil lead exposure in children in Shenyang, China. Environmental Pollution, 144, 327–335.CrossRefGoogle Scholar
  107. Riga-Karandinos, A. N., Saitanis, C. J., & Arapis, G. (2006). First study of anthropogenic PGE in roadside top-soils in Athens, Greece. Water, Air, and Soil Pollution, 172, 3–20.CrossRefGoogle Scholar
  108. Rimmer, D. L., Vizard, C. G., Pless-Mulloli, T., Singleton, I., Air, V. S., & Keatinge, Z. A. F. (2006). Metal contamination of urban soils in the vicinity of a municipal waste incinerator: One source among many. Science of the Total Environment, 356, 207–216.CrossRefGoogle Scholar
  109. Rodrigues, S., Pereira, M. E., Duarte, A. C., Ajmone-Marsan, F., Davidson, C. M., Grčman, H., et al. (2006). Mercury in urban soils: A comparison of local spatial variability in six European cities. Science of the Total Environment, 368, 926–936.CrossRefGoogle Scholar
  110. Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.Google Scholar
  111. Salonen, V., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918.CrossRefGoogle Scholar
  112. Salvagio Manta, D., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.CrossRefGoogle Scholar
  113. Samecka-Cymerman, A., & Kempers, A. J. (1999). Bioindication of heavy metals in the town Wrocław (Poland) with evergreen plants. Atmospheric Environment, 33, 419–430.CrossRefGoogle Scholar
  114. Sánchez-Martin, M. J., Sánchez-Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bulletin of Environmental Contamination and Toxicology, 64, 250–257.CrossRefGoogle Scholar
  115. Sauvé, S., Cook, N., Hendershot, W., & McBribe, M. B. (1996). Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environmental Pollution, 94, 153–157.CrossRefGoogle Scholar
  116. Schütz, A., Barregård, L., Sällsten, G., Wilske, J., Manay, N., Pereira, L., et al. (1997). Blood lead in Uruguayan children and possible sources of exposure. Environmental Research, 74, 17–23.CrossRefGoogle Scholar
  117. Schwartz, C., Fetzer, K. D., & Morel, J. L. (1995). Factors of contamination of garden soils by heavy metals. In R. Prost (Ed.), CD-Rom, Contaminated Soils, Third International Conference on the Biogeochemistry of Trace Elements, Paris.Google Scholar
  118. Sharma, K., & Reutergardh, L. B. (2000). Exposure of preschoolers to lead in the Makati area of metro Manila, the Philippines. Environmental Research Section A, 83, 322–332.CrossRefGoogle Scholar
  119. Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai. China Environmental Pollution, 156, 251–260.CrossRefGoogle Scholar
  120. Sörme, L., Bergbäck, B., & Lohm, U. (2001). Century perspective of heavy metal use in urban areas. A case study in Stockholm. Water, Air and Soil Pollution. Focus, 1, 197–211.CrossRefGoogle Scholar
  121. Spatari, S., Bertram, M., Gordon, R. B., Henderson, K., & Graedel, T. E. (2005). Twentieth century copper stocks and flows in North America: A dynamic analysis. Ecological Economics, 54, 37–51.CrossRefGoogle Scholar
  122. Sutherland, R. A. (2002). Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a diluted hydrochloric acid leach for soil and road deposited sediment. Applied Geochemistry, 17, 353–365.CrossRefGoogle Scholar
  123. Sutherland, R. A., & Tack, F. M. G. (2000). Metal phase associations in soils from an urban watershed, Honolulu, Hawaii. Science of the Total Environment, 256, 103–113.CrossRefGoogle Scholar
  124. Sutherland, R. A., Pearson, D. G., & Ottley, C. J. (2007). Platinum-group elements (Ir, Pd, Pt and Rh), in road-deposited sediments in two urban watersheds, Hawaii. Applied Geochemistry, 22, 1485–1501.CrossRefGoogle Scholar
  125. Tankari Dan-Badjo, A., Ducoulombier-Crépineau, C., Soligot, C., Feidt, C., & Rychen, G. (2007). Deposition of platinum group elements and polycyclic aromatic hydrocarbons on ryegrass exposed to vehicular traffic. Agronomy and Sustainable Development, 27, 261–266.CrossRefGoogle Scholar
  126. Terazono, A., Murakami, S., Abe, N., Inanc, B., Moriguchi, Y., Sakai, S., et al. (2006). Current status and research on E-waste issues in Asia. Journal of Material Cycles and Waste Management, 8, 1–12.CrossRefGoogle Scholar
  127. Thuy, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils—A case study of Danang-Hoian Area (Vietnam). Environmental Geology, 39, 603–610.CrossRefGoogle Scholar
  128. Tijhuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the city of Oslo, Norway. Environmental Geochemistry and Health, 24, 67–94.CrossRefGoogle Scholar
  129. Turer, D., Mynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314.CrossRefGoogle Scholar
  130. United Nations (2008). World Urbanization Prospects. The 2007 Revision Population Database. Retrieved from http://esa.un.org/unup/.
  131. van Beers, D., & Graedel, T. E. (2007). Spatial characterisation of multi-level in-use copper and zinc stocks in Australia. Journal of Cleaner Production, 15, 849–861.CrossRefGoogle Scholar
  132. Van Bohemen, H. D., & Van De Laak, W. H. J. (2003). The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management, 31, 50–68.CrossRefGoogle Scholar
  133. van Kamp, I., Leidelmeijer, K., Marsmana, G., & de Hollander, A. (2003). Urban environmental quality and human well-being. Towards a conceptual framework and demarcation of concepts. A literature study. Landscape and Urban Planning, 65, 5–18.CrossRefGoogle Scholar
  134. von Braun, M. C., von Lindern, I. H., Khristoforova, N. K., Kachur, A. H., Yelpatyevsky, P. V., Elpatyevskaya, V. P., et al. (2002). Environmental lead contamination in the Rudnaya Pristan–Dalnegorsk mining and smelter district, Russian far east. Environmental Research Section A, 88, 164–173.CrossRefGoogle Scholar
  135. VROM—The Ministry of Housing, Spatial Planning and Environment (2000). Circular on target values and intervention values for soil remediation. Annex A. DBO/1999226863, The Hague, The Netherlands.Google Scholar
  136. Vrščaj, B., Zupan, M., & Lobnik, F. (2002). Data on soil pollution for urban planning. Trans 9th Inter. Congr Soil Sci, Bangkok, Thailand, 14–21 August 2002.Google Scholar
  137. Wang, X. S., & Qin, Y. (2007). Some characteristics of the distribution of heavy metals in urban topsoil of Xuzhou, China. Environmental Geochemistry and Health, 29, 11–19.CrossRefGoogle Scholar
  138. Wang, X. S., & Sun, C. (2009). Pt and Pd concentrations and source in urban roadside soils from Xuzhou, China. Environmental Geology, 56(6), 1129–1133.CrossRefGoogle Scholar
  139. Wang, X. S., Qin, Y., & Chen, Y. K. (2006). Heavy metals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50, 1061–1066.CrossRefGoogle Scholar
  140. Wei, B., & Yang, L. (2009). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal. doi:10.1016/j.microc.2009.09.014.Google Scholar
  141. Whiteley, J. D., & Murray, F. (2003). Anthropogenic PGE concentrations in road dusts and roadside soils from Perth, Western Australia. Science of the Total Environment, 317, 121–135.CrossRefGoogle Scholar
  142. Wichmann, H., Anquandah, G. A. K., Schmidt, C., Zachmann, D., & Bahadir, M. A. (2007). Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany. Science of the Total Environment, 388, 121–127.CrossRefGoogle Scholar
  143. Wilcke, W., Muller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: Heavy metal and aluminium partitioning in topsoils. Geoderma, 86, 211–228.CrossRefGoogle Scholar
  144. Wong, C. S. C., & Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of the Total Environment, 319, 185–195.CrossRefGoogle Scholar
  145. Wong, C. S. C., Li, X. D., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.CrossRefGoogle Scholar
  146. Wong, M. H., Wu, S. C., Deng, W. J., Yu, X. Z., Luo, Q., Leung, A. O. W., et al. (2007). Export of toxic chemicals—A review of the case of uncontrolled electronic-waste recycling. Environmental Pollution, 149, 131–140.CrossRefGoogle Scholar
  147. Yang, Y., Campbell, C. D., Clark, L., Cameron, C. M., & Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952.CrossRefGoogle Scholar
  148. Yilmaz, F., Yilmaz, Y. Z., Ergin, M., Erkol, A. Y., Muftuoglu, A. E., & Karakelle, B. (2003). Heavy metal concentrations in surface soils of Izmit Gulf region, Turkey. Journal of Trace and Microprobe Techniques, 21, 523–531.CrossRefGoogle Scholar
  149. Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 355, 176–186.CrossRefGoogle Scholar
  150. Zhai, M., Kampunzu, H. A. B., Modisi, M. P., & Totolo, O. (2003). Distribution of heavy metals in Gaborone urban soils (Botswana), and its relationship to soil pollution and bedrock composition. Environmental Geology, 45, 171–180.CrossRefGoogle Scholar
  151. Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.DI.VA.P.R.A.—Chimica AgrariaUniversità degli Studi di TorinoGrugliascoItaly

Personalised recommendations