Water, Air, & Soil Pollution

, Volume 213, Issue 1–4, pp 85–93 | Cite as

Effect of Copper(II), Lead(II), and Zinc(II) on Growth and Sporulation of Halophytophthora from Taiwan Mangroves



This study evaluated the effect of lead (Pb(II)), zinc (Zn(II)) and copper (Cu(II)) on growth and sporulation of four Halophytophthora species (Halophytophthora vesicula, Halophytophthora elongata, Halophytophthora spinosa var. lobata, and an oogonia-producing Halophytophthora sp.) isolated from different mangrove sites in Taiwan. Results show that all isolates grew well or even better at 1 ppm concentration of the heavy metals tested. Growth of all test isolates was totally inhibited at 500 ppm, except for H. spinosa var. lobata exposed to Zn(II). For sporulation, all isolates produced moderate to abundant zoosporangia or oogonia at 1 ppm Pb(II) and Zn(II). Production of zoosporangia by H. vesicula, H. elongata and H. spinosa var. lobata was significantly affected or totally inhibited at 1 ppm Pb(II) and Zn(II) and all concentrations of Cu(II). Abnormal oogonia were produced by Halophytophthora sp. at 10 ppm Cu(II) and 100 ppm of the three heavy metals. In general, Cu(II) and Zn(II) were found to be the most toxic, and the least toxic was Pb(II). H. spinosa var. lobata was the most tolerant to all the heavy metals, while H. vesicula and H. elongata were the most sensitive. Results of this study shows that increased concentrations of Pb(II), Cu(II), and Zn(II) in the mangrove environment can significantly affect growth and impair normal reproduction of Halophytophthora species.


Copper Halophytophthora species Heavy metal pollution Lead Lower marine fungi Mangrove Oomycetes Stramenophiles Zinc 


  1. Arriagada, C. A., Herrera, M. A., & Ocampo, J. A. (2007). Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globolus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management, 84, 93–99.CrossRefGoogle Scholar
  2. Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.CrossRefGoogle Scholar
  3. Azevedo, M. M., Carvalho, A., Pascoal, C., Rodrigues, F., & Cassio, F. (2007). Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of the Total Environment, 377, 233–243.CrossRefGoogle Scholar
  4. Babich, H., & Stotzky, G. (1983). Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Water, Air, and Soil Pollution, 19, 193–202.Google Scholar
  5. Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78–91.CrossRefGoogle Scholar
  6. Environmental Protection Administration. (2009). Executive Yuan, Taiwan. http://wqshow.epa.gov.tw/. Accessed 22 June 2009.
  7. FAO. (1992). Committee for inland fisheries of Africa. Report of the First Session of the Working Party on Pollution and Fisheries. Accra, Ghana. FAO Fisheries Report 471. Rome: Food and Agriculture Organization.Google Scholar
  8. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.CrossRefGoogle Scholar
  9. Gadd, G. M., Gharieb, M. M., Ramsay, L. M., Sayer, J. A., Whatley, A. R., & White, C. (1999). Fungal processes for bioremediation of toxic metal and radionuclide pollution. Journal of Chemical Technology and Biotechnology, 71, 364–366.CrossRefGoogle Scholar
  10. Guimaraes-Soares, L., Felicia, H., Bebianno, M. J., & Cassio, F. (2006). Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. Science of the Total Environment, 327, 148–156.CrossRefGoogle Scholar
  11. Hicks, R. E., & Newell, S. Y. (1984). The growth of bacteria and fungus Phaeosphaeria typharum (Desm.) Holm (Eumycota: Ascomycotina) in salt-marsh microcosoms in the presence and absence of mercury. Journal of Experimental Marine Biology and Ecology, 78, 143–155.CrossRefGoogle Scholar
  12. Ho, K. C., & Hui, K. C. C. (2001). Chemical contamination of the east river (Dongjiang) and its implication on sustainable development in the Pearl River Delta. Environment International, 26, 303–308.CrossRefGoogle Scholar
  13. Ho, H. H., Chang, H. S., & Huang, S. H. (2003a). Halophytophthora elongata, a new marine species from Taiwan. Mycotaxon, LXXXV, 417-422.Google Scholar
  14. Ho, S. T., Tsai, L. J., & Yu, K. C. (2003). Correlations among aqua-regia extractable heavy metals in vertical river sediments. Diffuse Pollution Conference, Dublin, 14, 12–18.Google Scholar
  15. Huang, D. L., Zeng, G. M., Jiang, X. Y., Feng, C. L., Yu, H. Y., Huang, G. H., et al. (2006). Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials, B134, 268–276.CrossRefGoogle Scholar
  16. Hyde, K. D., Jones, E. B. G., Leaño, E. M., Pointing, S. B., Poonyth, A. D., & Vrijmoed, L. L. P. (1998). Role of fungi in marine ecosystems. Biodiversity and Conservation, 7, 1147–1161.CrossRefGoogle Scholar
  17. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  18. Jonglertjunya, W. (2008). Biosorption of lead (II) and copper (II) from aqueous solution. Chiang Mai Journal of Science, 35, 69–81.Google Scholar
  19. Kapoor, A., & Viraraghavan, T. (1995). Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53, 195–206.CrossRefGoogle Scholar
  20. Leaño, E. M. (2001). Straminipilous organisms from fallen mangrove leaves from Panay Island, Philippines. Fungal Diversity, 6, 75–81.Google Scholar
  21. Leaño, E. M., Vrijmoed, L. L. P., & Jones, E. B. G. (1998). Physiological studies on Halophytophthora vesicula (straminipilous fungi) isolated from fallen mangrove leaves from Mai Po, Hong Kong. Botanica Marina, 41, 411–419.CrossRefGoogle Scholar
  22. Leaño, E. M., Jones, E. B. G., & Vrijmoed, L. L. P. (2000). Why are Halophytophthora species well adapted to mangrove habitats? Fungal Diversity, 5, 131–151.Google Scholar
  23. Liao, S. W., & Chang, W. L. (2004). Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant Management, 42, 60–68.Google Scholar
  24. Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278.CrossRefGoogle Scholar
  25. Marbaniang, T., & Nazareth, S. (2007). Isolation of halotolerant Penicillium species from mangroves and salterns and their resistance to heavy metals. Current Science, 92, 895–897.Google Scholar
  26. Morselt, A. F. W., Smits, W. T. M., & Limonard, T. (1986). Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant and Soil, 96, 417–420.CrossRefGoogle Scholar
  27. Nakagiri, A., Tokumasu, S., Araki, H., Koreeda, S., & Tubaki, K. (1989). Succession of fungi in decomposing mangrove leaves in Japan. In T. Hattori, Y. Ishida, Y. Maruyama, R. Morita, & A. Uchida (Eds.), Recent advances in microbial ecology (pp. 297–301). Tokyo: Japan Scientific Society Press.Google Scholar
  28. Nakagiri, A., Ito, T., Manoch, L., & Tanticharoen, M. (2001). A new Halophytophthora species, H. porrigovesica, from subtropical and tropical mangroves. Mycoscience, 42, 33–41.CrossRefGoogle Scholar
  29. Newell, S. Y., & Fell, J. W. (1995). Do halophytophthoras (marine Pythiaceae) rapidly occupy fallen mangrove leaves by intraleaf mycelial growth? Canadian Journal of Botany, 73, 761–765.Google Scholar
  30. Ong Che, R. G., & Cheung, S. G. (1998). Heavy metals in Metapenaeus ensis, Eriocheir sinensis and sediment from the Mai Po Marshes, Hong Kong. Science of the Total Environment, 214, 87–97.CrossRefGoogle Scholar
  31. Pawlowska, T. E., & Charvat, I. (2004). Heavy-metal stress and development patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70, 6643–6649.CrossRefGoogle Scholar
  32. Taboski, M. A. S., Rand, T. G., & Piorko, A. (2005). Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiology Ecology, 53, 445–453.CrossRefGoogle Scholar
  33. Tam, N. F. Y., & Wong, Y. S. (1995). Spatial and temporal variations of heavy metal contamination in sediments of a mangrove swamp in Hong Kong. Marine Pollution Bulletin, 31, 254–261.CrossRefGoogle Scholar
  34. Tan, T. K., & Pek, C. L. (1997). Tropical mangrove leaf litter fungi in Singapore with an emphasis on Halophytophthora. Mycological Research, 101, 165–168.CrossRefGoogle Scholar
  35. Tsai, J., Yu, K. C., & Ho, S. T. (2003). Correlation of iron/iron oxides and trace heavy metals in sediments of five rivers in Southern Taiwan. Diffuse Pollution Conference, Dublin, 14, 19–25.Google Scholar
  36. Valix, M., & Loon, L. O. (2003). Adaptive tolerance behavior of fungi in heavy metals. Mineral Engineering, 16, 193–198.CrossRefGoogle Scholar
  37. Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98, 2557–2561.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of AquacultureNational Taiwan Ocean UniversityKeelungTaiwan
  2. 2.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations