Advertisement

Water, Air, & Soil Pollution

, Volume 212, Issue 1–4, pp 167–182 | Cite as

Trace Elements in Plankton, Benthic Organisms, and Forage Fish of Lake Moreno, Northern Patagonia, Argentina

  • Maria A. ArribéreEmail author
  • Linda M. Campbell
  • Andrea P. Rizzo
  • Marina Arcagni
  • Jorge Revenga
  • Sergio Ribeiro Guevara
Article

Abstract

The Northern Patagonian Andean range shared by Chile and Argentina has numerous glacial oligotrophic lakes protected in a series of National Parks. Recent baseline surveys indicated that concentrations in muscle and liver tissues from various fish species from across Nahuel Huapi and Los Alerces National Parks in Argentina were comparable or higher than similar fish species from other parts of the world. As a result, Lake Moreno, in Nahuel Huapi National Park, was chosen to investigate multiple element sinks, trends, and transfer in a representative Patagonia aquatic food web. The metals and metalloids Ag, As, Ba, Br, Cs, Co, Cr, Fe, Hg, K, Na, Rb, Se, and Zn were analyzed in three size plankton fractions, submerged macrophytes, biofilm, insect larvae, amphipods, decapods, gastropods (snails), annelids (earthworms), and forage fish. Except for nanoplankton (10–53 μm; small-celled algae, rotifers) and microplankton (53–200 μm; larger algae, ciliates, zooplankton nauplii), which share elemental compositional similarities, each taxon category had its own distinctive compositional pattern, revealed by principal component analysis. Nano- and microplankton tend to be relatively elevated in some metals, including As, Co, Cr, Fe, Hg, Zn, and Rb, followed by biofilm. Shredder-scrapper Trichoptera (caddisflies) have higher concentration of most of the studied elements than other insect larvae taxa, especially carnivorous Odonata (Anisoptera, dragonflies), which were associated with lower elemental contents. Those trends point to an overall tendency for biodiminishing element concentrations with trophic level in the benthos of Lake Moreno.

Keywords

Metals Aquatic food web Lake Moreno Functional feeding groups 

Notes

Acknowledgments

We acknowledge the assistance of Mr. Ricardo Sánchez in all the field work, Dr. M. Diéguez and Dr. C. Queimaliños for their help with the plankton samplers, Dr. R. Daga for the site characterization, Mr. J. Pérez during plankton sampling, and the RA-6 reactor staff for the irradiation of the samples. This work was partially funded by projects PICT2005 33838 and PICT2006 1051 of the ANPCyT (Agencia Nacional de Promoción Científica y Técnológica) of Argentina.

References

  1. Adams, W. J., & Johnson, H. E. (1977). Survey of the selenium content in the aquatic biota of western Lake Erie. Journal of Great Lakes Research, 3, 10–14.CrossRefGoogle Scholar
  2. Arribére, M. A., Ribeiro Guevara, S., Bubach, D. F., & Vigliano, P. H. (2006). Trace elements as fingerprint of lake of provenance and of species of some native and exotic fish of northern patagonian lakes. Biological Trace Element Research, 110, 71–95.CrossRefGoogle Scholar
  3. Arribére, M. A., Ribeiro Guevara, S., Bubach, D. F., Arcagni, M., & Vigliano, P. H. (2008). Selenium and mercury in native and introduced fish species of patagonian lakes, Argentina. Biological Trace Element Research, 122, 43–63.CrossRefGoogle Scholar
  4. Balogh, K. V. (1988). Comparison of mussels and crustacean plankton to monitor heavy metal pollution. Water, Air, and Soil Pollution, 37, 281–292.CrossRefGoogle Scholar
  5. Belzile, N., Chen, Y. W., Gunn, J. M., Tong, J., Alarie, Y., Delonchamp, T., et al. (2006). The effect of selenium on mercury assimilation by freshwater organisms. Canadian Journal of Fisheries and Aquatic Science, 63, 1–10.CrossRefGoogle Scholar
  6. Campbell, L.M., Arribére, M.A., Klassen, K., Kyser, K., Ribeiro Guevara, S., Bubach, D.F. (2005). Metal biogeochemistry and trophodynamics in Patagonia lakes of Nahuel Huapi National Park, Argentina, Proc. VII Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) América Latina, Santiago, Chile.Google Scholar
  7. Campbell, L. M., Kyser, K., Klassen, K., Arribére, M. A., Revenga, J., Daga, R. B., Ribeiro Guevara, S. (2007). Linking volcanoes and fish: metal biomagnification in Patagonia Andean aquatic food webs. Proc. 34th Aquatic Toxicology Workshop, Halifax, Nova Scotia, Canada.Google Scholar
  8. Chen, C. Y., Stemberger, R. S., Klaue, B., Blum, J. D., Pickhardt, P. C., & Folt, L. C. (2000). Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography, 45(7), 1525–1536.CrossRefGoogle Scholar
  9. Chiasson, A. G. (1991). The ratio of rubidium to caesium in threespine stickleback (Gasterosteus aculeatus), benthic and limnetic ticklebacks (Gasterosteus), and juvenile sockeye salmon (Oncorhynchus nerka). Chemistry and Ecology, 5, 227–240.CrossRefGoogle Scholar
  10. Ciesielski, T., Pastukhov, M. V., Fodor, P., Bertenyi, Z., Namiesnik, J., & Szefer, P. (2006). Relationships and bioaccumulation of chemical elements in the Baikal seal (Phoca sibirica). Environmental Pollution, 139, 372–384.CrossRefGoogle Scholar
  11. Farag, A. M., Woodward, D. F., Goldstein, J. N., Brumbaugh, W., & Meyer, J. S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates and fish form from Coeur d’Alene river basin, Idaho. Archives of Environmental Contamination and Toxicology, 34(1), 19–27.Google Scholar
  12. Hillwalker, W. E., Jepson, P. C., & Anderson, K. A. (2006). Selenium accumulation patterns in lotic and lentic aquatic systems. Science of the Total Environment, 366, 367–379.CrossRefGoogle Scholar
  13. Kanevskii, Y. P., & Fleishman, D. G. (1972). Investigation of food chains in an ichtyocoenosis of lake Dal’nyi (also spelt Dalnee) (Kamchatka) according to the concentrations of rubidium and cesium in hydrobionts. Academy of Science of the U.S.S.R. Translated from Ékologiya 1971. Soviet Journal of Ecology, 3(5–8), 191–193.Google Scholar
  14. Lara, G. P., & Moreno, C. A. (1995). Efectos de la depredación de Aegla abtao (Crustacea, Aeglidae) sobre la distribución espacial y abundancia de Diplodon chilensis (Bivalvia, Hyriidae) en el Lago Panguipulli, Chile. Revista Chilena de Historia Natural, 68, 123–129.Google Scholar
  15. Prahalad, A. K., & Seenayya, G. (1989). Physico-chemical interactions and bioconcentration of zinc and lead in the industrially polluted Lake Husainsager, Hyderabad, India. Environmental Pollution, 58A, 139–154.CrossRefGoogle Scholar
  16. Queimaliños, C. P., Modenutti, B. E., & Balseiro, E. G. (1999). Symbiotic association of the ciliate Ophryidium naumanni with Chlorella causing a deep chlorophyll α maximum in an oligotrophic South Andes lake. Journal of Plankton Research, 21, 167–178.CrossRefGoogle Scholar
  17. Quirós, R. (1988). Relationships between air temperature, depth, nutrients and chlorophyll in 103 Argentinian lakes. Verhandlungen der Internationalen Vereinigung für Limnologie, 23, 647–658.Google Scholar
  18. Radwan, S., Kowalik, W., & Kowalczyk, C. (1990). Occurrence of heavy metals in water, phytoplankton and zooplankton of a mesotrophic lake in Eastern Poland. The Science of the Total Environment, 96, 115–120.CrossRefGoogle Scholar
  19. Ribeiro Guevara, S., Bubach, D. F., Vigliano, P. H., Lippolt, G., & Arribére, M. A. (2004). Heavy metals and other trace elements in native mussel Diplodon chilensis from Northern Patagonian lakes, Argentina. Biological Trace Element Research, 102(1–3), 245–263.CrossRefGoogle Scholar
  20. Ribeiro Guevara, S., Arribére, M. A., Bubach, D. F., Vigliano, P. H., Rizzo, A. P., Alonso, M., et al. (2005). Silver contamination on abiotic and biotic compartments of lake Nahuel Huapi National Park lakes, Patagonia, Argentina. Science of the Total Environment, 336(1–3), 119–134.CrossRefGoogle Scholar
  21. Ribeiro Guevara, S., Bubach, D. F., Macchi, P. J., Vigliano, P. H., Arribére, M. A., & Colombo, J. C. (2006). Rb–Cs ratio as an indicator of fish diet in lakes of the Patagonia, Argentina. Biological Trace Element Research, 110, 97–119.CrossRefGoogle Scholar
  22. Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, L., van den Dijssel, C., et al. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany, 58(1–3), 206–215.CrossRefGoogle Scholar
  23. Salánki, J., Balogh, K. V., & Berta, E. (1982). Heavy metals in animals of Lake Balaton. Water Research, 16, 1147–1152.CrossRefGoogle Scholar
  24. Schmitt, C. J., Brumbaugh, W. G., Besser, J. M., May, T. W. (2007). Concentrations of metals in aquatic invertebrates from the Ozark National Scenic Riverways, Missouri. USGSS Open-File Report 2007–1435. Google Scholar
  25. Shrivastava, P., Saxena, A., & Swarup, A. (2003). Heavy metal pollution in a sewage-fed lake of Bhopal, (M. P.) India. Lakes & Reservoirs: Research and Management, 8, 1–4.CrossRefGoogle Scholar
  26. Smock, L. A. (1983). The influence of feeding habits on whole-body metal concentrations in aquatic insects. Freshwater Biology, 13, 301–311.CrossRefGoogle Scholar
  27. Souza, M. S., Modenutti, B. E., & Balseiro, E. G. (2007). Antioxidant defenses in planktonic crustaceans exposed to different underwater light irradiances in Andean lakes. Water, Air, and Soil Pollution, 183, 49–57.CrossRefGoogle Scholar
  28. Stanković, Ž., Pajević, S., Vučković, M., & Stojanović, S. (2000). Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum, 43(4), 583–585.CrossRefGoogle Scholar
  29. Stern, C. (2004). Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile, 31(2), 161–206.CrossRefGoogle Scholar
  30. Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environmental International, 32(2), 208–218.CrossRefGoogle Scholar
  31. Waddell, K.M., Giddings, E.M. (2004). Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake basins, Utah, Idaho, and Wyoming, 1998–99. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 03-4283. Salt Lake City, Utah, USA.Google Scholar
  32. Watanabe, K., Monaghan, M. T., Takemon, Y., & Omura, T. (2008). Biodilution of heavy metals in a stream macroinvertebrate food web: Evidence from stable isotope analysis. Science of the Total Environment, 394, 57–67.CrossRefGoogle Scholar
  33. Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219, 183–208.CrossRefGoogle Scholar
  34. Westfall, M. J., & Tennesseen, K. J. (1996). Odonata. In R. W. Merritt & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 164–211). Dubuque: Kendall/Hunt.Google Scholar
  35. Yang, H., Rose, N. L., & Battarbee, R. W. (2002). Distribution of some trace metals in Lochnagar, a Scottish mountain lake ecosystem and its catchment. Science of the Total Environment, 285, 197–208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria A. Arribére
    • 1
    • 2
    Email author
  • Linda M. Campbell
    • 3
  • Andrea P. Rizzo
    • 1
    • 4
  • Marina Arcagni
    • 1
    • 5
  • Jorge Revenga
    • 5
  • Sergio Ribeiro Guevara
    • 1
  1. 1.Laboratorio de Análisis por Activación Neutrónica, UAIN, Centro Atómico BarilocheComisión Nacional de Energía Atómica (CNEA)BarilocheArgentina
  2. 2.Instituto BalseiroUniversidad Nacional de Cuyo y CNEABarilocheArgentina
  3. 3.Department of Biology and School of Environmental StudiesQueen’s UniversityKingstonCanada
  4. 4.CONICETBuenos AiresArgentina
  5. 5.Centro Regional Universitario Bariloche (CRUB)Universidad Nacional del ComahueBarilocheArgentina

Personalised recommendations