Water, Air, & Soil Pollution

, Volume 212, Issue 1–4, pp 123–139 | Cite as

Influence of the Iron-Reducing Bacteria on the Release of Heavy Metals in Anaerobic River Sediment

  • Catherine Gounou
  • Noureddine BousserrhineEmail author
  • Gilles Varrault
  • Jean-Marie Mouchel


The impact of autochthonous anaerobic bacteria on the release of metals in river sediment was studied. The sediments were characterized and bacterial activity was monitored in a batch reactor, where the sediments were incubated with a synthetic substrate solution containing glucose as carbon source. The results showed that metal release was correlated to the bacterial growth (carbon mineralization). In particular, a relationship between iron reduction and metal release was observed indicating that iron-reducing bacteria had a strong influence. By reductive dissolution of iron oxides, bacteria also released their associated toxic elements into the liquid phase. While organic analysis showed acetate and butyrate production leading to a decrease in pH and indicating a Clostridium fermentative bacteria activity, the results did not indicate any direct role of organic acids in the dissolution of iron and their associated metals.


Trace metals Microorganisms River sediments Fermentation Iron-reducing bacteria 



The authors are grateful to Research Ministry and the University Paris Est for their financial and technical support and also to the Service of the Navigation of Seine for their authorization and technical support for the sediment sampling.


  1. AFNOR (1996). NFX 31-147 Mise en solution totale par attaque acide.Google Scholar
  2. Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822.CrossRefGoogle Scholar
  3. Berthelin, J., Munier-Lamy, C., & Leyval, C. (1995). Effect of microorganisms on mobility of heavy metals in soils. In P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, & A. L. Page (Eds.), Environmental impact of soil component interactions—Metals, other inorganics and microbial activities (Vol. 2, pp. 3–18). London: Lewis.Google Scholar
  4. Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424, 289–296.CrossRefGoogle Scholar
  5. Bilali, L. El, Rasmussen, P. E., Hall, G. E. M., & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17, 1171–1181.CrossRefGoogle Scholar
  6. Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 591–604.CrossRefGoogle Scholar
  7. Bousserrhine, N., Gasser, U. G., Jeanroy, E., & Berthelin, J. (1999a). Comparison between bacterial and chemical dissolution of Al-substituted goethite. Incidence on mobilization of iron. In J. Berthelin, P. M. Huang, J. M. Bollag, & F. Andreux (Eds.), Effect of mineral-organic-microorganism interactions on soil and freshwater environments (pp. 15–24). New York: Kluwer Academic.Google Scholar
  8. Bousserrhine, N., Gasser, U. G., Jeanroy, E., & Berthelin, J. (1999b). Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al- substituted goethites. Geomicrobiology Journal, 16(3), 245–258.CrossRefGoogle Scholar
  9. Calmano, W., & Förstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. Science of the Total Environment, 28, 77–90.CrossRefGoogle Scholar
  10. Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28, 223–235.Google Scholar
  11. Campanella, L., D'Orazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393.CrossRefGoogle Scholar
  12. Cappuyns, V., Swennen, R., & Devivier, A. (2006). Dredged river sediments: Potential chemical time bombs ? A case study. Water, Air, & Soil Pollution, 171, 49–66.CrossRefGoogle Scholar
  13. Carpentier, S., Moilleron, R., Beltran, C., Herve, D., & Thevenot, D. (2002a). Quality of dredged material in the River Seine basin (France). I. Physico-chemical properties. The Science of The Total Environment, 295, 101–113.CrossRefGoogle Scholar
  14. Carpentier, S., Moilleron, R., Beltran, C., Herve, D., & Thevenot, D. (2002b). Quality of dredged material in the river Seine basin (France). II. Micropollutants. The Science of The Total Environment, 299, 57–72.CrossRefGoogle Scholar
  15. Charlatchka, R., & Cambier, P. (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water, Air, & Soil Pollution, 118, 143–168.CrossRefGoogle Scholar
  16. Chen, S.-Y., & Lin, J.-G. (2001). Bioleaching of heavy metals from sediments: Significance of pH. Chemosphere, 44, 1093–1102.CrossRefGoogle Scholar
  17. Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, & Soil Pollution, 90, 543–556.CrossRefGoogle Scholar
  18. Dassonville, F., Godon, J. J., Renault, P., Richaume, A., & Cambier, P. (2004). Microbial dynamics in an anaerobic soil slurry amended with glucose, and their dependence on geochemical processes. Soil Biology and Biochemistry, 36, 1417–1430.CrossRefGoogle Scholar
  19. Dold, B. (2003). Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 80, 55–68.CrossRefGoogle Scholar
  20. Francis, A. J., & Dodge, C. J. (1990). Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Environmental Science and Technology, 24(3), 373–378.CrossRefGoogle Scholar
  21. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.CrossRefGoogle Scholar
  22. Gomez, C., & Bosecker, K. (1999). Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicrobiology Journal, 16, 233–244.CrossRefGoogle Scholar
  23. Gundersen, P., & Steinnes, E. (2003). Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Research, 37, 307–318.CrossRefGoogle Scholar
  24. Herr, C., & Gray, N. F. (1997). Sampling riverine sediments impacted by acid mine drainage: Problems and solutions. Environmental Geology, 29, 37–45.CrossRefGoogle Scholar
  25. Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soils and sediments fractions. Pure Applied Chemistry, 76(2), 415–442.CrossRefGoogle Scholar
  26. Huang, P.-M., Wang, M.-K., & Chiu, C.-Y. (2005). Soil mineral-organic matter-microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 49, 609–635.CrossRefGoogle Scholar
  27. Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50, 484–524.Google Scholar
  28. Kurek, E. (2002). Microbial mobilization of metals from soil minerals under aerobic conditions. In P. M. Huang, J.-M. Bollag, & N. Senesi (Eds.), Interactions between soil particles and microorganisms. Impact on the terrestrial ecosystem. IUPAC Series on Analytical and Physical Chemistry of Environmental systems (pp. 189–225). Chichester: Wiley.Google Scholar
  29. Ledin, M. (2000). Accumulation of microorganisms—Processes and importance for soil systems. Earth Science Reviews, 51, 1–31.CrossRefGoogle Scholar
  30. Leermakers, M., Gao, Y., Gabelle, C., Lojen, S., Ouddane, B., Wartel, M., et al. (2005). Determination of high resolution pore water profiles of trace metals in sediments of the rupel river (Belgium) using Det (Diffusive Equilibrium in Thin Films) and DGT (Diffusive Gradients in Thin Films) techniques. Water, Air, & Soil Pollution, 166, 265–286.CrossRefGoogle Scholar
  31. Lin, J.-G., & Chen, S.-Y. (1998). The relationship between adsorption of heavy metals and organic matter in river sediments. Environment International, 24(3), 345–352.CrossRefGoogle Scholar
  32. Linde, M., Öborn, I., & Gustafsson, J. P. (2007). Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water, Air, and Soil Pollution, 183, 69–83.CrossRefGoogle Scholar
  33. Lombardi, A., Garcia, T., & Oswaldo, J. (2002). Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Research, 36, 3193–3202.CrossRefGoogle Scholar
  34. Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55, 259–287.Google Scholar
  35. Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480.Google Scholar
  36. Lovley, D. R., & Phillips, E. J. P. (1989). Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Applied and Environmental Microbiology, 55, 3234–3236.Google Scholar
  37. Quantin, C., Becquer, T., Rouiller, J. H., & Berthelin, J. (2001). Oxide weathering and trace metal release by bacterial reduction in a new caledonia ferralsol. Biogeochemistry, 53(3), 323–340.CrossRefGoogle Scholar
  38. Quevauviller, P., Ure, A., Muntau, H., & Griepink, B. (1993). Improvement of analytical measurements within the BCR-programme: Single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental and Analytical Chemistry, 5, 129–134.CrossRefGoogle Scholar
  39. Qureshi, S., Richards, B. K., Hay, A. G., Tsai, C. C., McBride, M. B., Baveye, P., et al. (2003). Effect of microbial activity on trace element release from sewage sludge. Environmental Science & Technology, 37, 3361–3366.CrossRefGoogle Scholar
  40. Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.CrossRefGoogle Scholar
  41. Regnell, O., & Tunlid, A. (1991). Laboratory study of chemical speciation of mercury in lake sediment and water under aerobic and anaerobic conditions. Applied and Environmental Microbiology, 57, 789–795.Google Scholar
  42. Reynolds, K. A., & Pepper, I. L. (2000). Microorganisms in the environment. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (pp. 19–27). San Diego: Academic.Google Scholar
  43. Ryu, H. W., Moon, H. S., Lee, E. Y., Cho, K. S., & Choi, H. (2003). Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. Journal of Environmental Quality, 32, 751–759.CrossRefGoogle Scholar
  44. Schippers, A., & Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1), 319–321.Google Scholar
  45. Sims, J. L., & Patrick, W. H. (1978). The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Science Society of America Journal, 42, 258–262.CrossRefGoogle Scholar
  46. Stephens, S. R., Alloway, B. J., Parker, A., Carter, J. E., & Hodson, M. E. (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environmental Pollution, 114, 407–413.CrossRefGoogle Scholar
  47. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: Wiley.Google Scholar
  48. Tessier, A., Campbell, P. G. S., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  49. Thevenot, D. R., Moilleron, R., Lestel, L., Gromaire, M.-C., Rocher, V., Cambier, P., Bonte, P., Colin, J.-L., de Ponteves, C., & Meybeck, M. (2007). Critical budget of metal sources and pathways in the Seine River basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Science of The Total Environment, Human activity and material fluxes in a regional river basin: The Seine River watershed—Seine Special Issue, 375, 180–203.Google Scholar
  50. Tormo, M. A., & Izco, J. M. (2004). Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. Journal of Chromatography, 1033(2), 305–310.CrossRefGoogle Scholar
  51. Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A. J., & Martin, H. (1995). Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochimica Cosmochima Acta, 59, 1285–1297.CrossRefGoogle Scholar
  52. Yang, J. Y., Yang, X. E., He, Z. L., Li, T. Q., Shentu, J. L., & Stoffella, P. J. (2006). Effects of pH, organic acids, and inorganic ions on lead dissolution from soils. Environmental Pollution, 143, 9–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Catherine Gounou
    • 1
    • 2
  • Noureddine Bousserrhine
    • 1
    Email author
  • Gilles Varrault
    • 2
  • Jean-Marie Mouchel
    • 3
  1. 1.UMR 7618 BioEMCo, IBIOSUniversité Paris 12-Val de MarneCréteil CedexFrance
  2. 2.Université Paris-Est, CereveUMR-MA102 - AgroParisTechCréteil CedexFrance
  3. 3.Sisyphe UMR 7619Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations