Water, Air, and Soil Pollution

, Volume 203, Issue 1–4, pp 53–63 | Cite as

Lead (II) Removal from Aqueous Solution by Spent Agaricus bisporus: Determination of Optimum Process Condition Using Taguchi Method

  • Haiyan Huang
  • Guanglei Cheng
  • Lan Chen
  • Xiaoqiang Zhu
  • Heng Xu


In this paper, Taguchi method was applied to determine the optimum condition for Pb (II) removal from aqueous solution by spent Agaricus bisporus. An orthogonal array experiment design (L9(34) which is of four control factors (pH, t (contact time), m (sorbent mass), and C 0 (initial Pb (II) concentration)) having three levels was employed. Biosorption capacity (mg metal/g biosorbent) and percent removal (%) were investigated as the quality characteristics to be optimized. In order to determine the optimum levels of the control factors precisely, range analysis and analysis of variance were performed. The optimum condition for biosorption capacity was found to be pH = 5.00, t = 5.0 h, m = 0.010 g, and C 0 = 50 mg/L. And for percent removal, the optimum condition was found to be pH = 4.00, t = 4.0 h, m = 0.100 g, and C 0 = 50 mg/L. Under these optimum conditions, biosorption capacity and percent removal can reach 60.76 mg/g and 80.50%, respectively.


Biosorption Agaricus bisporus Taguchi method Optimization Lead (II) 



The authors acknowledge financial support from the National High Technology Research and Development Program of China (863 Program), Project No. 2006AA06Z361 and thank Professor Guanglei Cheng for his technical assistance. Besides Xiaoqiang Zhu, Shiyu Zhou and Shouting Chen had provided experiment help.


  1. Abdel-Halim, S. H., Shehata, A. M. A., & El-Shahat, M. F. (2003). Removal of lead ions from industrial waste water by different types of natural materials. Water Research, 37, 1678–1683. doi: 10.1016/S0043-1354(02)00554-7.CrossRefGoogle Scholar
  2. Akar, T., Tunali, S., & Kiran, I. (2005). Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 25, 227–235. doi: 10.1016/j.bej.2005.05.006.CrossRefGoogle Scholar
  3. Akhtar, N., Saeedb, A., & Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresource Technology, 88, 163–165. doi: 10.1016/S0960-8524(02)00289-4.CrossRefGoogle Scholar
  4. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.. Journal of Hazardous Materials, B 108, 85–94.CrossRefGoogle Scholar
  5. Aksu, Z. (2001). Equilibrium and Kinetic modelling of cadmium (II) biosorption by C. Vulgaris in a batch system: effect of temperature. Separation and Purification Technology, 21, 285–294. doi: 10.1016/S1383-5866(00)00212-4.CrossRefGoogle Scholar
  6. Al-Asheh, S., & Duvnjak, Z. (1995). Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnology Progress, 11, 638–642. doi: 10.1021/bp00036a006.CrossRefGoogle Scholar
  7. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. doi: 10.1016/S0304-3894(02)00263-7.CrossRefGoogle Scholar
  8. Brasila, J. L., Eva, R. R., Milchareka, C. D., Martinsa, L. C., Pavana, F. A., dos Santos Jr, A. A., Diasa, S. L. P., Duponta, J., Zapata Noreñab, C. P., & Lima, E. C. (2006). Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials, 133, 143–153. doi: 10.1016/j.jhazmat.2005.10.002.CrossRefGoogle Scholar
  9. Cabuk, A., Akar, T., Tunali, S., & Tabak, Ö. (2006). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb (II). Journal of Hazardous Materials, 136, 317–323. doi: 10.1016/j.jhazmat.2005.12.019.CrossRefGoogle Scholar
  10. Chen, G., Zeng, G., Tang, L., Dua, C., Jiang, X., Huang, G., Liu, H., & Shen, G. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 99, 7034–7040. doi: 10.1016/j.biortech.2008.01.020.CrossRefGoogle Scholar
  11. Chin-pin, H., Chin-pao, H., & Morehart, A. L. (1990). The removal of Cu (II) from dilute aqueous solution by Saccharomyces cerevisiae. Water Research, 24, 433–439. doi: 10.1016/0043-1354(90)90225-U.CrossRefGoogle Scholar
  12. Chubara, N., Carvalhob, J. R., & Joana Neiva Correia, M. (2004). Cork biomass as biosorbent for Cu (II), Zn (II) and Ni (II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 57–65. doi: 10.1016/j.colsurfa.2003.09.014.CrossRefGoogle Scholar
  13. Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., & Bhattacharjee, S. (2002). Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36, 625–632. doi: 10.1016/S0043-1354(01)00234-2.CrossRefGoogle Scholar
  14. Clarkson, T. W., Friberg, L., Nordberg, G. F., & Sager, P. R. (1998). Biological Monitoring of Toxic Metals. New York: Kluwer.Google Scholar
  15. dos Santos, W. L., dos Santos, C. M. M., Costa, J. L. O., Andrade, H. M. C., & Ferreira, S. L. C. (2004). Multivariate optimization and validation studies in on-line pre-concentration system for lead determination in drinking water and saline waste from oil refinery. Microchemical Journal, 77, 123–129. doi: 10.1016/j.microc.2004.02.006.CrossRefGoogle Scholar
  16. Ertugay, N., & Bayhan, Y. K. (2007). Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials, 154, 432–439. doi: 10.1016/j.jhazmat.2007.10.070.CrossRefGoogle Scholar
  17. Gupta, V. K., & Rastogi, A. (2008a). Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.-A comparative study. Colloids and Surfaces. B, Biointerfaces, 64, 170–178. doi: 10.1016/j.colsurfb.2008.01.019.CrossRefGoogle Scholar
  18. Gupta, V. K., & Rastogi, A. (2008b). Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials, 152, 407–414. doi: 10.1016/j.jhazmat.2007.07.028.CrossRefGoogle Scholar
  19. Huang, C., Huang, C. P., & Morehart, A. L. (1990). The removal of Cu(II) from dilute aqueous solution by S. cerevisiae. Water Research, 24, 433–439.CrossRefGoogle Scholar
  20. Jacquesb, R. A., Limaa, E. C., Diasa, S. L. P., Mazzocatoc, A. C., & Pavan, F. A. (2007). Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Separation and Purification Technology, 53, 193–198. doi: 10.1016/j.seppur.2007.01.018.CrossRefGoogle Scholar
  21. Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S. J., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92, 253–262. doi: 10.1016/S0304-3894(02)00021-3.CrossRefGoogle Scholar
  22. Kaminari, N. M. S., Schultz, D. R., Ponte, M. J. J. S., Ponte, H. A., Marino, C. E. B., & Neto, A. C. (2007). Heavy metals recovery from industrial wastewater using Taguchi method. Chemical Engineering Journal, 126, 139–146. doi: 10.1016/j.cej.2006.08.024.CrossRefGoogle Scholar
  23. Kansanen, P. H., & Venetvaara, J. (1991). Comparison of biological collectors of airborne heavy metals near ferrochrome and steelworks. Water, Air, and Soil Pollution, 60, 337–359. doi: 10.1007/BF00282631.CrossRefGoogle Scholar
  24. Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78, 131–139. doi: 10.1016/j.minpro.2005.10.001.CrossRefGoogle Scholar
  25. Lima, E. C., Betina, R., Vaghetti, J. C. P., Brasil, J. L., Simon, N. M., Dos Santos, A. A., Pavan, F. A., Dias, S. L. P., Benvenutti, E. V., & Da Silva, E. A. (2007). Adsorption of Cu (II) on Araucaria angustifolia wastes: Determination of the optimal conditions by statistic design of experiments. Journal of Hazardous Materials, 140, 211–220. doi: 10.1016/j.jhazmat.2006.06.073.CrossRefGoogle Scholar
  26. Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., & Poch, J. (2006). Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials. B, 133, 203–211.Google Scholar
  27. Melgar, M. J., Alonso, J., & García, M. A. (2007). Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. The Science of the Total Environment, 385, 12–19. doi: 10.1016/j.scitotenv.2007.07.011.CrossRefGoogle Scholar
  28. Montgomery, D. C. (2001). Design and Analysis of Experiments (5th ed.). New York: Wiley.Google Scholar
  29. Pagnanelli, F., Mainelli, S., Vegliò, F., & Toro, L. (2003). Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modelling. Chemical Engineering Science, 58, 4709–4717. doi: 10.1016/j.ces.2003.08.001.CrossRefGoogle Scholar
  30. Pavana, F. A., Mazzocatob, A. C., Jacquesa, R. A., & Diasb, S. L. P. (2008). Ponkan peel: A potential biosorbent for removal of Pb (II) ions from aqueous solution. Biochemical Engineering Journal, 40, 357–362. doi: 10.1016/j.bej.2008.01.004.CrossRefGoogle Scholar
  31. Pip, E. (1991). Cadmium, copper, and lead in soils and garden produce near a metal smelter at Flin-Flon, Manitoba. Bulletin of Environmental Contamination and Toxicology, 46, 790–796. doi: 10.1007/BF01689969.CrossRefGoogle Scholar
  32. Sarı, A., Tuzen, M. (2008). Kinetic and equilibrium studies of biosorption of Pb (II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2008.09.002.
  33. Saeed, A., & Iqbal, M. (2003). Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research, 37, 3472–3480. doi: 10.1016/S0043-1354(03)00175-1.CrossRefGoogle Scholar
  34. Saeed, A., Iqbal, M., & Akhtar, M. W. (2005a). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117, 65–73. doi: 10.1016/j.jhazmat.2004.09.008.CrossRefGoogle Scholar
  35. Saeed, A., Akhter, M. W., & Iqbal, M. (2005b). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45, 25–31. doi: 10.1016/j.seppur.2005.02.004.CrossRefGoogle Scholar
  36. Sangi, M. R., Shahmoradi, A., Zolgharnein, J., Azimi, G. H., & Ghorbandoost, M. (2008). Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. Journal of Hazardous Materials, 155, 513–522. doi: 10.1016/j.jhazmat.2007.11.110.CrossRefGoogle Scholar
  37. Sheng, P. X., Ting, Y.-P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275, 131–141. doi: 10.1016/j.jcis.2004.01.036.CrossRefGoogle Scholar
  38. Uluozlu, O. D., Sari, A., Tuzen, M., & Soylak, M. (2008). Biosorption of Pb (II) and Cr (III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technology, 99, 2972–2980. doi: 10.1016/j.biortech.2007.06.052.CrossRefGoogle Scholar
  39. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. doi: 10.1016/S0304-386X(00)00160-2.CrossRefGoogle Scholar
  40. Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812. doi: 10.1016/0734-9750(93)90003-6.CrossRefGoogle Scholar
  41. Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochemistry, 39, 437–445. doi: 10.1016/S0032-9592(03)00094-3.CrossRefGoogle Scholar
  42. Zolgharnein, J., Shahmoradi, A., & Sangi, M. R. (2008). Optimization of Pb (II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta, 76, 528–532. doi: 10.1016/j.talanta.2008.03.039.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Haiyan Huang
    • 1
  • Guanglei Cheng
    • 2
  • Lan Chen
    • 1
  • Xiaoqiang Zhu
    • 1
  • Heng Xu
    • 1
  1. 1.Key Laboratory for Bio-resources and Eco-environment of Education Ministry, College of Life ScienceSichuan UniversityChengduChina
  2. 2.Analytical and Testing CenterSichuan UniversityChengduChina

Personalised recommendations