Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lead Bioavailability in Soil and Soil Components

  • 290 Accesses

  • 19 Citations


The bioavailability of Pb in polluted soil as well as in Pb-spiked individual soil components (carbonates, Fe-oxides, clays, organic matter, and quartz) was determined using a genetically engineered bioluminescent bacterial reporter strain. Calculated bioavailability was compared to total concentrations of the metal in the samples and to its fraction leached into the aqueous assay medium. Our data show that adsorbed Pb is unavailable to the bacterial reporter, which responds only to dissolved Pb. We also found that leaching with aqueous solutions do not desorb any measurable Pb (<0.1 ppm) from contaminated soils, but does so from most of the freshly spiked soil components, at different efficiencies (10%, 25–60%, 25–55%, 0%, and 0–3% for carbonate, quartz, clay, Fe-oxide, and organic matter, respectively). This tendency to retain or release Pb, and hence determine its bioavailability, corresponds to the affinity of the various soil fractions to Pb as reported in the literature. For example, Fe-oxides which have the highest affinity for Pb retain all its Pb, making it unavailable to microorganisms in the soil. Nonetheless, even in the soil fractions with the lowest affinity for Pb (quartz), only 55% of the desorbed Pb is bioavailable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Adriano, D. C. (2001). Trace elements in the terrestrial environment: biogeochemistry, bioavailability and risk of metals, 2nd edn. New York: Springer.

  2. Bontidean, I., Mortari, A., Leth, S., Brown, N. L., Karlson, U., Larsen, M. M., et al. (2004). Biosensors for detection of mercury in contaminated soils. Environmental Pollution, 131, 255–262. doi:10.1016/j.envpol.2004.02.019.

  3. Bradham, K. D., Dayton, E. A., Basta, N. T., Schroder, J., Payton, M., & Lanno, R. P. (2006). Effect of soil properties on lead bioavailability and toxicity to earthworms. Environmental Toxicology and Chemistry, 25, 769–775. doi:10.1897/04-552R.1.

  4. Brandt, K. K., Holm, P. E., & Nybroe, O. (2006). Bioavailability and toxicity of soil particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensors strain. Environmental Toxicology and Chemistry, 25, 1738–1741. doi:10.1897/05-558R.1.

  5. Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56, 45–51. doi:10.1016/S0147-6513(03)00049-6.

  6. Committee of bioavailability of contaminants in soils and sediments water science and technology board (2003). National research council. Bioavailability of contaminants in soils and sediments processes, tools, and applications. Washington The national academic press.

  7. Corbisier, P., Thiry, E., & Diels, L. (1998). Bacterial biosensors for the toxicity assessment of solid wastes. Environmental Toxicology and Water Quality, 11, 171–177. doi:10.1002/(SICI)1098-2256(1996)11:3<171::AID-TOX1>3.0.CO;2-6.

  8. Erel, Y., & Morgan, J. J. (1992). The relationships between rock-derived lead and iron in natural fresh water systems. Geochimica et Cosmochimica Acta, 56, 4157–4167. doi:10.1016/0016-7037(92)90258-K.

  9. Hakkila, K., Green, T., Leskine, P., Ivsak, A., Marks, R., & Virta, M. (2004). Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fiber-optic tips. Journal of Applied Toxicology, 24, 333–342. doi:10.1002/jat.1020.

  10. Halim, C. E., Scott, J. A., Amal, R., Short, S. A., Beydoum, D., Low, G., et al. (2005). Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Journal of Hazardous Materials, 120, 101–111. doi:10.1016/j.jhazmat.2004.12.039.

  11. Hamelink, J., Landrum, P. F., Bergman, H. L., & Benson, W. H. (1994). Bioavailability: physical, chemical and biological interactions. Boca Raton: CRC.

  12. Heinz, H. G., Hoffman, J. D., & Audet, J. D. (2004). Phosphorus amendment reduces bioavailability of lead to mallards ingesting contaminated sediments. Archives of Environmental Contamination and Toxicology, 46, 534–541. doi:10.1007/s00244-003-3036-3.

  13. Hund-Rinke, K., & Kordel, W. (2003). Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicology and Environmental Safety, 56, 52–62. doi:10.1016/S0147-6513(03)00050-2.

  14. Ivask, A., Francois, M., Kahru, A., Dubourguier, H. C., Virta, M., & Douay, F. (2004). Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere, 55, 147–156. doi:10.1016/j.chemosphere.2003.10.064.

  15. Janssen, R. P. T., Posthuma, L., Baerselman, R., & Den Hollander, H. A. (1997). Equilibrium partitioning to heavy metals in Dutch field soils. II. Prediction of metal accumulation in earthworms. Environmental Toxicology and Chemistry, 16, 2479–2488. doi:10.1897/1551-5028(1997)016<2479:EPOHMI>2.3.CO;2.

  16. Kamnev, A. A., van der Lelie, D. (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports, 20, 239–258.

  17. Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soil in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry, 11, 363–370. doi:10.1016/0883-2927(95)00084-4.

  18. Kelly, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Ohio: Battelle.

  19. Kohler, S., Belkin, S., & Schmid, D. R. (2000). Reporter gene bioassay in environmental analysis. Fresenius’ Journal of Analytical Chemistry, 366, 769–779. doi:10.1007/s002160051571.

  20. Lappalainen, J., Karp, M., Nurmi, J., Juvonen, R., & Virta, M. (2000). Comparison of the total mercury content in sediment samples with a mercury sensor bacteria and Vibrio fischeri toxicity test. Environmental Toxicology, 15, 443–448.

  21. Liao, V. H., Chien, M. T., Tseng, Y. Y., & Ou, K. L. (2006). Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environmental Pollution, 142, 17–23. doi:10.1016/j.envpol.2005.09.021.

  22. Magrisso, S., Erel, Y., & Belkin, S. (2008). Microbial reporters of metal bioavailability. Microbial Biotechnology, 1, 320–330. doi:10.1111/j.1751-7915.2008.00022.x.

  23. Peijnenburg, W. J. G. M. (2002). Bioavailability of metals to soil in vertebrates. In H. E. Allen (Ed.), Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes, and plants (pp. 89–112). Pensacola: SETAC.

  24. Peijnenburg, W. J. G. M., Baerselman, R., de Groot, A. C., Jager, T., Posthuma, L., & Van Veen, R. P. M. (1999). Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 44, 294–310. doi:10.1006/eesa.1999.1838.

  25. Pertof, H., Laurent, C. T., Laas, T., & Kagedal, L. (1978). Density gradients prepared from colloidal silica particles coated by Polyvinylpyrrolidone (Percoll). Analytical Biochemistry, 88, 271–282. doi:10.1016/0003-2697(78)90419-0.

  26. Rensing, C., & Maier, R. M. (2003). Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicology and Environmental Safety, 56, 140–147. doi:10.1016/S0147-6513(03)00057-5.

  27. Robson, M. (2003). Methodologies for assessing exposure to metals: human host factor. Ecotoxicology and Environmental Safety, 56, 104–109. doi:10.1016/S0147-6513(03)00054-X.

  28. Rodney, R., Piepenbrink, D. S., & Piepenbrink, M. S. (2006). Lead and immune function. Critical Reviews in Toxicology, 36, 359–385. doi:10.1080/10408440500534297.

  29. Ruby, M. V., Davis, A., Timothy, E. L., Rosalind Schoof, C. R. L., Freeman, G. B., & Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27, 2870–2877. doi:10.1021/es00049a030.

  30. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430. doi:10.1021/es950057z.

  31. Ruby, M. V., Schoof, R., Brattin, W., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33, 3697–3705. doi:10.1021/es990479z.

  32. Sauve, S. (2002). Speciation of metals in soils. In H. A. Alle (Ed.), Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes, and plants (pp. 7–37). Pensacola: SETAC.

  33. Shetty, R. S., Deo, S. K., Shah, P., Sun, Y., Rosen, B. P., & Daunert, S. (2003). Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Analytical and Bioanalytical Chemistry, 376, 11–17.

  34. Teutsch, N., Erel, Y., Halicz, L., & Banin, A. (2001). The distribution of natural and anthropogenic lead in Mediterranean soils. Geochimica et Cosmochimica Acta, 65, 2853–2864. doi:10.1016/S0016-7037(01)00607-X.

  35. Turpeinen, R., Virta, M., & Haggblom, M. M. (2003). Analysis of arsenic bioavailability in contaminated soils. Environmental Toxicology and Chemistry, 22, 1–6. doi:10.1897/1551-5028(2003)022<0001:AOABIC>2.0.CO;2.

  36. Vangheluwe, M. L., Janssen, C. R., & Sprang, P. A. V. (1999). Selection of bioassay for sediment toxicity screening. In G. Persoone, C. Janssen, & W. D. Coen (Eds.), New microbiotest for routine toxicity screening and biomonitoring (pp. 449–458). New York: Kluwer/Plenum.

  37. Vanhala, P. T., & Ahtiainen, J. H. (1994). Soil respiration, ATP content, and photobacterium toxicity test as indicators of metal pollution in soil. Environmental Toxicology and Water Chemistry, 9, 115–121. doi:10.1002/tox.2530090207.

Download references


The authors wish to thank Dr. Philippe Corbisier and Dr. Ludo Diels (VITO, Belgium) for supplying the bacterial strain AE1433. Funding was provided by the Israeli Ministry of Environmental Protection, by a Hebrew University internal fund, and by grant number 226/2 from the Israeli Science Foundation.

Author information

Correspondence to Sagi Magrisso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magrisso, S., Belkin, S. & Erel, Y. Lead Bioavailability in Soil and Soil Components. Water Air Soil Pollut 202, 315–323 (2009). https://doi.org/10.1007/s11270-009-9978-y

Download citation


  • Bioavailability
  • Pb
  • Soil
  • Bioreporter
  • Heavy metals