Advertisement

Water, Air, & Soil Pollution

, Volume 211, Issue 1–4, pp 299–312 | Cite as

Status Quo of Soil Contamination with Inorganic and Organic Pollutants of the River Oka Floodplains (Russia)

  • Dana ZimmerEmail author
  • Kristian Kiersch
  • Gerald Jandl
  • Ralph Meissner
  • Nikolay Kolomiytsev
  • Peter Leinweber
Article

Abstract

The contamination status of rivers and their floodplains with inorganic and organic pollutants in central Russia is poorly known. We investigated the concentrations of inorganic (As, Cd, Cu, Hg, Ni, Pb and Zn) and persistent organic pollutants (hexachlorocyclohexane, PCBs, cyclodienes, DDX and other pesticides) in floodplain soils of the Oka River catchment (Russia). The level of contamination was generally lower than in the Elbe River floodplain but in the same range as in other European river systems such as floodplains of the rivers Rhine, Dřevnice and Yachroma. Only soil samples from the periphery of the city of Ryazan (200 km southeast of Moscow) had a higher anthropogenic enrichment of Cd, Cu and Zn which was comparable to the contaminated Elbe River floodplains. These soils also had the largest concentrations of persistent organic pollutants among all samples from the Oka River catchment. Therefore, the need for large-scale remediation seems to be less urgent than in Central European river catchments and mainly restricted to some “hot spot” areas.

Keywords

Floodplain River Oka Heavy metals Persistent organic pollutants Phytoremediation 

Notes

Acknowledgements

This research was funded by a grant from the German Federal Ministry of Education and Research (BMBF), contract no. 02WT0870, in cooperation with the UFZ–Helmholtz Centre for Environmental Research and the All-Russian Research Institute of Hydraulic Engineering and Land Reclamation–VNIIGiM Moscow. The analyses of POPs were carried out in the Mass Spectrometric Laboratory at the Faculty of Agricultural and Environmental Sciences, University of Rostock which is funded by the “Exzellenzförderprogramm” of the “Ministerium für Bildung, Wissenschaft und Kultur” Mecklenburg West-Pomerania, project UR 07 079. We thank Mrs. M. Hopp and Mrs. U. Grunzel for their technical assistance. Furthermore, we thank Prof. M.I. Litaor from the Tel-Hai Academic College in Israel for critical reading of the revised manuscricpt and language edition.

References

  1. Abraham, W.-R., Lünsdorf, H., Strömpl, C., Nogales, B., Moore, E. R. B., & Timmis, K. N. (2003). Microbial communities in composite biofilms participating in the degradation of PCB. Water, Air, and Soil Pollution: Focus, 3, 57–64.CrossRefGoogle Scholar
  2. Aidarov, I. P., Venitsianov, E. V., & Ratkovich, D. Y. (2002). On the problem of environmental rehabilitation of river basins. Water Resources, 29(2), 219–229.CrossRefGoogle Scholar
  3. Adhya, T. K., Apte, S. K., Raghu, K., Sethunathan, N., & Muthy, N. B. K. (1996). Novel polypeptides induced by the insecticide lindane (gamma-hexachlorocyclohexane) are required for its biodegradation by a Sphingomonas paucimobilis strain. Biochemical and Biophysical Research Communications, 221, 755–761.CrossRefGoogle Scholar
  4. Alewell, C., Paul, S., Lischeid, G., & Storck, F. R. (2008). Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability? Science of the Total Environment, 406, 335–342.CrossRefGoogle Scholar
  5. Antić, A., Cvetković, O., Jovančićević, B., Blagojević, S., & Nikolić-Mandić, S. (2006). Eco-chemical characterisation of fluvisol of Velika Morava River valley (Serbia) based on the physico-chemical parameters and distribution of heavy metals. Fresenius' Environmental Bulletin, 15(11), 1434–1441.Google Scholar
  6. Armitage, P. D., Szoszkiewicz, K., Blackburn, J. H., & Nesbitt, I. (2003). Ditch communities: A major contributor to floodplain biodiversity. Aquatic Conservation, 13(2), 165–185.CrossRefGoogle Scholar
  7. Baba, D., Yasuta, T., Yoshida, N., Kimura, Y., Miyake, K., Inoue, Y., et al. (2007). Anaerobic biodegradation of polychlorinated biphenyls by a microbial consortium originated from uncontaminated paddy soil. World Journal of Microbiology & Biotechnology, 23(11), 1627–1636.CrossRefGoogle Scholar
  8. Bábek, O., Hilscherová, K., Nehyba, S., Zeman, J., Famera, M., Francu, J., et al. (2008). Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Journal of Soils Sediments, 8, 165–176.CrossRefGoogle Scholar
  9. Baborowski, M., Büttner, O., Morgenstern, P., Krüger, F., Lobe, I., Rupp, H., et al. (2007). Spatial and temporal variability of the sediment deposition on the artificial-lawn traps in a floodplain of the River Elbe. Environmental Pollution, 148, 770–778.CrossRefGoogle Scholar
  10. Baborowski, M., von Tümpling, W., Jr., & Friese, K. (2004). Behaviour of suspended particulate matter (SPM) and selected trace metals during 2002 summer flood in the River Elbe (Germany) at Magdeburg monitoring station. Hydrology and Earth System Sciences, 8(2), 135–150.CrossRefGoogle Scholar
  11. Bethge-Steffens, D. (2008). Der Bodenwasserhaushalt von zwei repräsentativen Flussauenstandorten der Mittelelbe–Untersuchungen mit wägbaren Grundwasserlysimetern: Helmholtz Centre for Environmental Research–UFZ, Dissertation no. 01Google Scholar
  12. Böhme, M. (2006). Distribution of water quality parameters in two cross-sections of the River Elbe measured with high local, temporal, and analytic resolution. Acta Hydrochimica et Hydrobiologica, 34, 201–213.CrossRefGoogle Scholar
  13. Büttner, O., Otte-Witte, K., Krüger, F., Meon, G., & Rode, M. (2006). Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition at the event scale in the middle River Elbe, Germany. Acta Hydrochimica et Hydrobiologica, 34, 265–278.CrossRefGoogle Scholar
  14. CEN (2000). EN 13346. Bestimmung von Spurenelementen und Phosphor, Europäisches Komitee für Normung, BrüsselGoogle Scholar
  15. Deutsches Institut für Normung. (1997). DIN 19730. Extraktion von Spurenelementen mit Ammoniumnitratlösung. Berlin: Beuth Verlag.Google Scholar
  16. Droppo, I. G., Leppard, G. G., & Flannigan, D. T. (1997). The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water, Air, and Soil Pollution, 99, 43–45.Google Scholar
  17. Droppo, I. G., Lau, Y. L., & Mitchell, C. (2001). The effect of depositional history on contaminated bed sediment stability. Science of the Total Environment, 266, 7–13.CrossRefGoogle Scholar
  18. Droppo, I. G., Nackaerts, K., Walling, D. E., & Williams, N. (2005). Can flocs and water stable soil aggregates be differentiated within fluvial systems? Catena, 60, 1–18.CrossRefGoogle Scholar
  19. Galiulin, R. V., & Bashkin, V. N. (1996). Organochlorinated compounds (PCBs and insecticides) in irrigated agrolandcapes of Russia and Uzbekistan. Water, Air, and Soil Pollution, 89, 247–266.CrossRefGoogle Scholar
  20. Galiulin, R. V., Bashkin, V. N., & Galiulina, R. R. (2001). Behavior of 2,4-D herbicide in coastal area of the Oka River, Russia. Water, Air, and Soil Pollution, 129, 1–12.CrossRefGoogle Scholar
  21. Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1–18.Google Scholar
  22. Götz, R., Enge, P., Friesel, P., Roch, K., Schilling, B., Hartmann, B., et al. (1994). Quantification of polychlorinated biphenyls (PCBs) and hexachlorobezene (HCB) in the picogram/liter range in water of the River Elbe. Fresenius' Journal of Analytical Chemistry, 348, 694–695.CrossRefGoogle Scholar
  23. Gremm, T. J., Heidt, A., & Frimmel, F. H. (2002). Die große Unbekannte–Qualität russischer Flüsse. Chemie in unserer Zeit, 36(4), 226–239 (in German).Google Scholar
  24. Gröngröft, A., Krüger, F., Grunewald, K., Meißner, R., & Miehlich, G. (2005). Plant and soil contamination with trace metals in the Elbe floodplains: A case study after the flood in August 2002. Acta Hydrochimica et Hydrobiologica, 33(5), 466–474.CrossRefGoogle Scholar
  25. Häfner, M. (1978). Pentachlornitrobenzol-, Pentachloranilin- und Methylthiopenta-chlorbenzol-Rückstände bei Gemüsekulturen und in gärtnerisch genutzten Erden. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 51, 49–57 (in German).CrossRefGoogle Scholar
  26. Hernandez, B. S., Arensdorf, J. J., & Focht, D. D. (1995). Catabolic characteristics of biphenyl-utilizing isolates wich cometabolize PCBs. Biodegradation, 6, 75–82.CrossRefGoogle Scholar
  27. Hernandez, B. S., Koh, S.-C., Chial, M., & Focht, D. D. (1997). Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation, 8, 153–158.CrossRefGoogle Scholar
  28. Hilscherova, K., Dusek, L., Kubik, W., Cupr, P., Hofman, J., Klanova, J., et al. (2007). Redistribution of organic pollutants in river sediments and alluvial soils related to major floods. Journal Soils Sediments, 7(3), 167–177.CrossRefGoogle Scholar
  29. Jensen, S., Renberg, L., & Reuthergradh, L. (1977). Residue analysis of sediment and sewage sludge for organochlorines in the presence of elemental sulphur. Analytical Chemistry, 49, 316–318.CrossRefGoogle Scholar
  30. Klok, Ch, & Kraak, M. H. S. (2008). Living in highly dynamic polluted river floodplains, due contaminats contribute to population and community effects? Science of the Total Environment, 406, 455–461.CrossRefGoogle Scholar
  31. Krüger, F., Meissner, R., Gröngröft, A., & Grunewald, K. (2005). Flood induced heavy metal and arsenic contamination of Elbe River floodplain soils. Acta Hydrochimica et Hydrobiologica, 33(5), 455–465.CrossRefGoogle Scholar
  32. Krüger, F., Schwartz, R., Kunert, M., & Friese, K. (2006). Methods to calculate sedimentation rates of floodplain soils in the middle region of the Elbe River. Acta Hydrochimica et Hydrobiologica, 34, 175–187.CrossRefGoogle Scholar
  33. Kuchar, E. J., Geenty, F. O., Griffith, W. P., & Thomas, R. J. (1969). Analytical studies of metabolism of terraclor in beagle dogs, rats, and plants. Journal of Agricultural and Food Chemistry, 17, 1237–1240.CrossRefGoogle Scholar
  34. Langenhoff, A. A. M., Staps, J. J. M., Pijls, C., Alphenaar, A., Zwiep, G., & Rijnaarts, H. H. M. (2002). Intrinsic and stimulated in situ biodegradation of hexachlorcyclohexane (HCH). Water, Air, and Soil Pollution: Focus, 2, 171–181.CrossRefGoogle Scholar
  35. Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefGoogle Scholar
  36. Le Calvez, N., Barthe, J. F., Bodineau, L., & Fischer, J.-C. (2002). Microwave assisted solvent extraction (MASE) for the determination of 40 pesticides in sediment samples. Revue F.S.B., 1, 41–50.Google Scholar
  37. Leinweber, P., Eckhardt, K.-U., Fischer, H., & Kuzyakov, Y. (2008). A new rapid micro-method for the molecular–chemical characterization of rhizodeposits by field-ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 22, 1230–1234.CrossRefGoogle Scholar
  38. Li, Y. F., Zhulidov, A. V., Robarts, R. D., & Korotova, L. G. (2004). Hexachlorocyclohexane use in the former Soviet Union. Archives of Environmental Contamination and Toxicology, 48, 10–15.CrossRefGoogle Scholar
  39. Manickham, N., Mau, M., & Schlömann, M. (2006). Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Applied Microbiology and Biotechnology, 69, 580–588.CrossRefGoogle Scholar
  40. Matsumoto, E., Kawanaka, Y., Yun, S.-J., & Oyaizu, H. (2008). Isolation of dieldrin- and endrin-degrading bacteria using 1,2-epoxycyclohexane as a structural analog of both compounds. Applied Microbiology and Biotechnology, 80, 1095–1103.CrossRefGoogle Scholar
  41. Meharg, A. A., & Cairney, J. W. G. (2000). Ectomycorrhizas—Extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry, 32(11–12), 1475–1484.CrossRefGoogle Scholar
  42. Middeldorp, P. J. M., van Doesburg, W., Schraa, G., & Stams, A. J. M. (2005). Reductive dechlorination of hexachlorcyclohexane (HCH) isomers in soil under anaerobic conditions. Biodegradation, 16, 283–290.CrossRefGoogle Scholar
  43. Moiseenko, T. I., Gashkina, N. A., Sharova, Y. N., & Kudryavtseva, L. P. (2008). Ecotoxicological assessment of water quality and ecosystem health: A case study of the Volga River. Ecotoxicology and Environmetal Safety, 71, 837–850.CrossRefGoogle Scholar
  44. Molins, C., Hogendoorn, E. A., Heusinkveld, H. A. G., Van Zoonen, P., & Baumenn, R. A. (1997). Microwave assisted solvent extraction (MASE) of organochlorine pesticides from soil samples. International Journal of Environmental Analytical Chemistry, 68, 1155–1169.CrossRefGoogle Scholar
  45. Morales, C. F. L., Strathmann, M., & Flemming, H.-C. (2007). Role of biofilms on sediment transport—Investigations with artificial sediment columns. In B. Westrich & U. Förstner (Eds.), Sediment dynamics and pollutant mobility in rivers (pp. 358–368). Berlin: Springer.Google Scholar
  46. Nadeau, L. F., Menn, F. M., Breen, A., & Sayler, G. S. (1994). Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Applied and Environmental Microbiology, 60, 51–55.Google Scholar
  47. Nagpal, V., & Paknikar, K. M. (2006). Integrated biological approach for the enhanced degradation of lindane. Indian Journal of Biotechnology, 5(3), 400–406.Google Scholar
  48. Nawab, A., Aleem, A., & Malik, A. (2003). Determination of organochlorine pesticides in agricultural soil with special references to γ-HCH degradation by Pseudomonas strains. Bioresource Technology, 88, 41–46.CrossRefGoogle Scholar
  49. Nikarnorov, A. M., Bryzgalo, V. A., & Chernogaeva, G. M. (2007). Anthropogenically modified natural background and its formation in the Russian freshwater ecosystems. Russian Meteorology and Hydrology, 32(11), 698–710.CrossRefGoogle Scholar
  50. Overesch, M., Rinklebe, J., Broll, G., & Neue, H.-U. (2007). Metals and arsenic in soils and corresponding vegetation at central Elbe River floodplains (Germany). Environmental Pollution, 145, 800–812.CrossRefGoogle Scholar
  51. Pepelnik, R., Karrasch, B., Niedergesäß, R., Erbslöh, B., Mehrens, M., Link, U., et al. (2005). Influence of the flooding in 2002 on the plankton and the quality of water and sediment of the River Elbe over its longitudinal profile. Acta Hydrochimica et Hydrobiologica, 33(5), 430–448.CrossRefGoogle Scholar
  52. Petticrew, E. L., & McConnachie, J. L. (2007). Sediment–water interactions. In B. Westrich & U. Förstner (Eds.), Sediment dynamics and pollutant mobility in rivers (pp. 217–232). Berlin: Springer.CrossRefGoogle Scholar
  53. Phillips, Th M, Seech, A. G., Lee, H., & Trevors, J. T. (2005). Biodegradation of hexachlorcyclohexane (HCH) by microorganisms. Biodegradation, 16, 363–392.CrossRefGoogle Scholar
  54. Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.CrossRefGoogle Scholar
  55. Poot, A., Gillissen, F., & Koelmans, A. A. (2007). Effects of flow regime and flooding on heavy metal availibility in sediment and soil of dynamic river system. Environmental Pollution, 148, 779–787.CrossRefGoogle Scholar
  56. Prange, A., Bössow, E., Erbslöh, B., Jablinski, R., Jantzen, E., Krause, R., et al. (1997). Erfassung und Beurteilung der Belastung der Elbe mit Schadstoffen. Teilprojekt 2: Schwermetalle. Geogene Hintergrundwerte und zeitliche Entwicklung. Geesthacht: BMBF-Abschlussbericht.Google Scholar
  57. Pulkrabová, J., Suchanová, M., Tomaniová, M., Kocourek, V., & Hajšlová, J. (2008). Organic pollutants in areas impacted by flooding in 2002: A 4-year survey. Bulletin of Environmental Contamination and Toxicology, 81, 299–304.CrossRefGoogle Scholar
  58. Schnitzler, A., Hale, B., & Alsum, E. (2005). Biodiversity of floodplain forests in Europe and eastern North America: A comparative study of the Rhine and Mississippi Valleys. Biodiversity and Conservation, 14(1), 97–117.CrossRefGoogle Scholar
  59. Schwartz, R. (2006). Geochemical characterisation and erosion stability of fine-grained groyne field sediments of the middle Elbe River. Acta Hydrochimica et Hydrobiologica, 34, 223–233.CrossRefGoogle Scholar
  60. Schwartz, R., Gerth, J., Neumann-Hensel, H., Bley, S., & Förstner, U. (2006). Assessment of highly polluted fluvisol in the Spittelwasser floodplain based on national guideline values and MNA-criteria. Journal Soils Sediments, 6(3), 145–155.CrossRefGoogle Scholar
  61. Scott, C., Pandey, G., Hartley, C. J., Jackson, C. J., Cheesman, M. J., Taylor, M. C., et al. (2008). The enzymatic basis for pesticide bioremediation. Indian Journal of Microbology, 48, 65–79.CrossRefGoogle Scholar
  62. Shubin, M. A. (2003) A conceptual analysis of the relation between human activities and river quality deterioration in the Volga-Don basin (Russia). European Water Management Online. www.ewaonline.de/journal/2003_02
  63. Singer, A. C., Gilbert, E. S., Luepromchai, E., & Crowley, D. E. (2000). Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Applied Microbiology and Biotechnology, 54, 838–843.CrossRefGoogle Scholar
  64. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.Google Scholar
  65. StatSoft, Inc. (2001). STATISTICA 6.0 for Windows. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, Tulsa, OK, 74104-4442, (918) 749-1119, Fax: (918) 749-2217. E-mail: info@statsoftinc.com. http://www.statsoftinc.com
  66. Subramanian, S. B., Yan, S., Tyagi, R. D., Surampalli, R. Y., & Lohani, B. N. (2008). Isolation and molecular identification of extracellular polymeric substances (EPS) producing bacterial strains for sludge settling and dewatering. Journal of Environmental Science and Health Part A, 43, 1495–1503.CrossRefGoogle Scholar
  67. Thomas, J. E., Ou, L.-T., & Al-Agely, A. (2008). DDE remediation and degradation. Reviews of Environmental Contamination and Toxicology, 194, 55–69.CrossRefGoogle Scholar
  68. Tiedje, J. M., Quensen, J. F., III, Chee-Sanford, J., Schimel, J. P., & Boyd St, A. (1993). Microbial reductive dechlorination of PCBs. Biodegradation, 4, 231–240.CrossRefGoogle Scholar
  69. Titaeva, N. A., Grishantseva, E. S., & Safranova, N. S. (2007). Patterns in the distribution of several chemical elements in bottom sediments and soils of the Ivanankovo reservoir area, Volga River valley. Moscow University Geology Bulletin, 62(3), 173–183.CrossRefGoogle Scholar
  70. US EPA SW-846 (2008) Test methods for evaluating solid waste, physical/chemical methods (update IV; January 3rd, 2008)—method 3546Google Scholar
  71. Van der Geest, H. M., & Paumen, M. L. (2008). Dynamics of metal availabilty and toxicity in historically polluted floodplain sediments. Science of the Total Environment, 406, 419–425.CrossRefGoogle Scholar
  72. van der Veen, A., Ahlers, C., Zachmann, D. W., & Friese, K. (2006). Spatial distribution and bonding forms of heavy metals in sediment along the middle course of the River Elbe (km 287–390). Acta Hydrochimica et Hydrobiologica, 34, 214–222.CrossRefGoogle Scholar
  73. van Duck, P. J., & van de Voorde, H. (1976). Biodegradation of methoxychlor and kethane. European Journal of Applied Microbiology, 2, 277–284.CrossRefGoogle Scholar
  74. Voeglin, A., Weber, F.-A., & Kretzschmar, R. (2007). Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 71, 5804–5820.CrossRefGoogle Scholar
  75. Vogt, J., Soille, P., de Jager, A., Rimavičiūė, E., Mehl, Foisneau, S., Bódis, K., et al. (2007). A pan-European River and catchment database. Reference Report by the Joint Research Center of the European Commission. http://www.jrc.ec.europa.eu
  76. Walker, K., Vallero, D. A., & Lewis, R. G. (1999). Factors influencing the distribution of γ-HCH and other hexachlorocyclohexanes in the environment. Environmental Science & Technology, 33, 4373–4378.CrossRefGoogle Scholar
  77. Wang, X., White, J. C., Gent, M. P. N., Iannucci-Berger, W., Eitzer, B. D., & Mattina, M. I. (2004). Phytoextraction of weathered p,p′-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. International Journal of Phytoremediation, 6(4), 363–385.CrossRefGoogle Scholar
  78. Ward, J. V., Tockner, K., & Schiemer, F. (1999). Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regulated Rivers: Research & Managment, 15(1–3), 125–139.CrossRefGoogle Scholar
  79. Winkels, H. J., Kroonenberg, S. B., Lychagin, M. Y., Marin, G., Rusakov, G. V., & Kasimov, N. S. (1998). Geochronology of priority pollutants in sedimentaions zones of the Volga and Danube delta in comparsion with the Rhine delta. Applied Geochemistry, 13(5), 581–591.CrossRefGoogle Scholar
  80. Witter, B., Francke, W., Franke, S., Knauth, H. D., & Miehlich, G. (1998). Distribution and mobility of organic micropollutants in River Elbe floodplains. Chemosphere, 37, 63–78.CrossRefGoogle Scholar
  81. Witter, B., Winkler, M., & Friese, K. (2003). Depth distribution of chlorinated and polycyclic aromatic hydrocarbons in floodplain soils of the River Elbe. Acta Hydrochimica et Hydrobiologica, 31(4–5), 411–422.CrossRefGoogle Scholar
  82. Yang, H., Zheng, M., & Zhu, Y. (2008). Tracing the behaviour of hexachlorobenzene in a paddy soil–rice system over a growth season. Journal of Environmental Sciences, 20(1), 56–61.CrossRefGoogle Scholar
  83. Zolotareva, B. N. (2003). Heavy metals in soils of the upper Oka River basin. Eurasian Soil Science, 36(2), 164–172.Google Scholar
  84. Zhulidov, A. V., Robarts, R. D., Headley, J. V., Korotova, L. G., Zhulidov, D. A., & Zhulidova, O. V. (2003). Riverine fluxes of the persistent organochlorine pesticides hexachlorocyclohexane and DDT in the Russian Federation. Chemosphere, 41, 829–841.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dana Zimmer
    • 1
    Email author
  • Kristian Kiersch
    • 1
  • Gerald Jandl
    • 1
  • Ralph Meissner
    • 2
  • Nikolay Kolomiytsev
    • 3
  • Peter Leinweber
    • 1
  1. 1.Institute for Land UseUniversity of RostockRostockGermany
  2. 2.Department of Soil PhysicsUFZ–Helmholtz Centre for Environmental ResearchFalkenbergGermany
  3. 3.All-Russian Research Institute of Hydraulic Engineering and Land Reclamation—VNIIGiMMoscowRussia

Personalised recommendations