Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Study on Al(III) and Fe(II) Ions Sorption by Cattle Manure Vermicompost

  • 220 Accesses

  • 12 Citations

Abstract

Cattle manure vermicompost has been used for the adsorption of Al(III) and Fe(II) from both synthetic solution and kaolin industry wastewater. The optimum conditions for Al(III) and Fe(II) adsorption at pH 2 (natural pH of the wastewater) were particle size of ≤250 µm, 1 g/10 mL adsorbent dose, contact time of 4 h, and temperature of 25°C. Langmuir and Freundlich adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R 2 values from 0.90 to 0.98. In synthetic solution, the maximum adsorption capacity of the vermicompost for Al(III) was 8.35 mg g−1 and for Fe(II) was 16.98 mg g−1 at 25°C when the vermicompost dose was 1 g 10 mL−1, and the initial adjusted pH was 2. The batch adsorption studies of Al(III) and Fe(II) on vermicompost using kaolin wastewater have shown that the maximum adsorption capacities were 1.10 and 4.30 mg g−1, respectively, at pH 2. The thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Acemioglu, B. (2004). Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes. Bioresource Technology, 93, 99–102.

  2. Airoldi, C., & Critter, S. A. M. (1997). Brazilian red latosol a typic soil as an exchanger: a thermodynamic study involving Cu, Zn, Cd, Hg, Ca and Na. Clay and Clay Minerals, 45, 125–131.

  3. Alexeyev, V. (1967). Quantitative analysis. Moscow: Mir.

  4. Ampiam, S. G. (1979). Clays. Washington, D. C: United States Bureau of Mines, (Mineral Commody Profile).

  5. Angove, M. J., Wells, J. D., & Johnson, B. B. (1999). The influence of temperature on the adsorption of cadmium (II) and cobalt (II) on goethite. Journal of Colloid and Interface Science, 211, 281–290.

  6. Barrera, H., Ureña-Núñez, F., Bilyeu, B., & Barrera-Díaz, C. (2006). Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia. Journal of Hazardous Materials, 136, 846–853.

  7. Benitez, M., Das, D., Ferreira, R., Pischel, U., & Garcia, H. (2006). Urea-containing mesoporous silica for the adsorption of Fe(III) cations. Chemistry of Materials, 18, 5597–5603.

  8. Brasil (2005). Conselho Nacional do Meio Ambiente – Conama, Resolucão No. 357, Brasília, Ministério do Meio Ambiente.

  9. Dai, S., Burleigh, M. C., Shin, Y., Morrow, C. C., Barnes, C. E., & Xue, Z. (1999). Imprint coating: a novel synthesis of selective functionalized ordered mesoporous sorbents. Angewandte Chemie-International Edition, 38, 1235–1239.

  10. Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6, 533–540.

  11. Erses, A. S., Fazal, M. A., Onaya, T. T., & Craig, W. H. (2005). Determination of solid waste sorption capacity for selected heavy metals in landfills. Journal of Hazardous Materials, 121, 223–232.

  12. Freundlich, H. M. F. (1906). über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

  13. Giles, C. H., & Smith, D. A. (1974). General treatment and classification of the solute sorption isotherms. Journal of Colloid and Interface Science, 47, 755–765.

  14. Gupta, G. S., Singh, A. K., Tyagi, B. S., Prasad, G., & Singh, V. N. (1992). Treatment of carpet and metallic effluents by China clay. Journal of Chemical Technology and Biotechnology, 55, 277–284.

  15. Gupta, V. K., Jain, C. K., Ali, I., Sharma, M., & Saini, V. K. (2003). Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.

  16. Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1996). Pore- and solid-diffusion kinetics in fixed bed adsorption under constant-pattern conditions. Industrial and Engineering Chemical Fundamentals, 5, 212–223.

  17. Harter, R. D. (1984). Curve-fit errors in Langmuir adsorption maxima. Soil Science Society of America Journal, 48, 749–752.

  18. Hossain, K. Z., & Mercier, L. (2002). Intraframework metal ion adsorption in ligand-functionalized mesoporous silica. Advanced Materials, 14, 1053–1056.

  19. Iqbal, M., & Saeed, A. (2006). Entrapment of fungal hyphae in structural fibrous network of papaya wood to produce a unique biosorbent for the removal of heavy metals. Enzyme Microbial Technology, 39, 996–1001.

  20. Jordão, C. P., Pereira, M. G., & Pereira, J. L. (2001). Effects of kaolin processing plants on the water quality of streams in Brazil. Toxicological and Environmental Chemistry, 82, 139–158.

  21. Jordão, C. P., Pereira, M. G., & Pereira, J. L. (2002a). Metal contamination of river waters and sediments from effluents of kaolin processing in Brazil. Water Air and Soil Pollution, 140, 119–138.

  22. Jordão, C. P., Pereira, M. G., Bellato, C. R., Pereira, J. L., & Matos, A. T. (2002b). Assessment of water systems for contaminants from domestic and industrial sewages. Environmental Monitoring and Assessment, 79, 75–100.

  23. Jordão, C. P., Pereira, M. G., Einloft, R., Santana, M. B., Bellato, C. R., & de Mello, J. W. V. (2002c). Removal of Cu, Cr, Ni, and Zn from electroplating wastes and synthetic solutions by vermicompost of cattle manure. Journal of Environmental Science and Health, A37, 875–892.

  24. Jordão, C. P., Fialho, L. L., Cecon, P. R., Matos, A. T., Neves, J. C. L., Mendonça, E. S., et al. (2005). Effects of Cu, Ni and Zn on lettuce grown in metal-enriched vermicompost amended soil. Water, Air, and Soil Pollution, 172, 21–38.

  25. Jordão, C. P., Fernandes, R. B. A., Ribeiro, K. L., Nascimento, B. S., & Barros, P. M. (2008). Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost. Journal of Hazardous Materials, 162, 804–811.

  26. Kadirvelu, K., & Namasivayam, C. (2000). Agricultural by-products as metal adsorbents: sorption of lead (II) from aqueous solutions onto coirpith carbon. Environmental Technology, 21, 1091–1097.

  27. Khan, A. A., & Singh, R. P. (1987). Adsorption thermodynamics of carbofuran on Sn(IV) 656 arsenosilicate in H+, Na+ and Ca2+ forms. Colloids and Surfaces, 24, 33–42.

  28. Kwon, J.-S., Yun, S.-T., Kim, S.-O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn(II) in aqueous solutions by scoria. Chemosphere, 60, 1416–1426.

  29. Lamim, S. S. M., Jordão, C. P., Brune, W., Pereira, J. L., & Bellato, C. R. (1998). Caracterização química e física de vermicomposto e avaliação de sua capacidade em adsorver cobre e zinco. Química Nova, 21, 278–283.

  30. Langmuir, L. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1370.

  31. Matos, G. D., & Arruda, M. A. Z. (2003). Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochemistry, 39, 81–88.

  32. Mineração Caolinita Ltda. (1989). Informe Técnico, Caulim. Minas Gerais: Mineração Caolinita.

  33. Mohan, D., & Chandler, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surfaces A, 177, 183–196.

  34. Pereira, M. G., & Arruda, M. A. Z. (2003). Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. Journal of the Brazilian Chemical Society, 14, 39–47.

  35. Sekher, K. C., Subramanian, S., Modak, J. M., & Natrajan, K. A. (1998). Removal of metal ions using an industrial biomass with reference to environmental control. International Journal of Mineral Processing, 53, 107–120.

  36. Senin, H. B., Subhi, O., Rosliza, R., Kancono, N., Azhar, M. S., Hasiah, S., et al. (2006). Role of sawdust in the removal of iron from aqueous solution. Asian Journal on Science and Technology for Development, 23, 223–229.

  37. Singh, T. S., Parikh, B., & Pant, K. K. (2006). Investigation on the sorption of aluminium in drinking water by low-cost adsorbents. Water SA, 32, 49–54.

  38. Yavuz, H., Say, R., Andaç, M., Bayraktar, N., Denizli, A. (2004). Performance of dye-affinity beads for aluminium removal in magnetically stabilized fluidized bed. Biomagnetic Research and Technology 2:5. Available from: http://www.bioagres.com/content/2/1/5.

  39. Yun, Y. S., & Volesky, B. (2003). Modeling of lithium interference in cadmium biosorption. Environmental Science & Technology, 37, 3601–3608.

Download references

Acknowledgements

We thank the Brazilian National Research Council (CNPq, Brazil) for the financial support.

Author information

Correspondence to Cláudio Pereira Jordão.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jordão, C.P., Fernandes, R.B.A., de Lima Ribeiro, K. et al. A Study on Al(III) and Fe(II) Ions Sorption by Cattle Manure Vermicompost. Water Air Soil Pollut 210, 51–61 (2010). https://doi.org/10.1007/s11270-009-0223-5

Download citation

Keywords

  • Vermicompost
  • Aluminum
  • Iron
  • Adsorption
  • Langmuir and Freundich isotherms
  • Kaolin wastewater