Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay

  • 991 Accesses

  • 85 Citations

Abstract

The current study investigated the sorption of sulfadimethoxine (SMT), sulfamethoxazole (SMX), tetracycline (TET), and oxytetracycline (OTC) to Na-rich montmorillonite clay in synthetic effluent (SE) and field wastewater effluent (FE). Both SMT and SMX showed a low sorption capacity and are therefore likely to be highly mobile in the environment, while the sorption of TET to clay in environmental pH range (6.5–7.5) showed similarly high adsorption capacity. Differences in sorption capacities of TET and OTC to SE or FE were attributed to the various concentrations of divalent cations in the effluents. In addition, differences in sorption of OTC or TET to SE were attributed to their different molecular structure. Moreover, the adsorption of TET in SE and FE showed linear adsorption isotherms and fitted to Freundlich model. Further experiments showed that addition of humic acid or SE to TET sorbed to clay did not enhance or suppress the sorption of TET to clay.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Avisar, D., Lester, Y., & Ronen, D. (2009a). Sulfamethoxazole detected in a deep phreatic aquifer beneath effluent irrigated land. Science of the Total Environment, 407, 4278–4282.

  2. Avisar, D., Levin, G., & Gozlan, I. (2009b). The occurrence of oxytetracycline (OTC) in local groundwater beneath fish pond. Earth and environmental sciences. doi:10.1007/s12665-009-0088-3.

  3. Boxall, A. B. A., Blackwell, P., Cavallo, R., Kay, P., & Tolls, J. (2002). The sorption and transport of a sulphonamides antibiotic in soil systems. Toxicology Letters, 131, 19–28.

  4. Carrasquillo, A. J., Bruland, G. L., MacKay, A. A., & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 42(20), 7634–7642.

  5. Essington, M. E. (2004). Soil and Water Chemistry. Boca Raton: CRC.

  6. Figueroa, R. A., Leonard, A., & Mackay, A. A. (2004). Modeling tetracycline antibiotic sorption in clays. Environmental Science & Technology, 38, 476–483.

  7. Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical Chemistry, 73, 3632–3638.

  8. Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243–3249.

  9. Gu, C., Karthikeyan, K. G., Sibley, S. D., & Pedersen, J. A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 66, 1494–1501.

  10. Hamscher, G., Sczensny, S., Hoper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509–1518.

  11. Hamscher, G., Pawelzick, T. H., Höper, H., & Nau, H. (2005). Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry, 24, 861–868.

  12. Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175–189.

  13. Hirsch, R., Ternes, T. A., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109–118.

  14. Hui, L., Sheng, G., Teppen, B. J., Johnston, C. T., Boyd, S. A. (2003). Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Science Society of America Journal, 67, 122–131.

  15. Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361, 196–207.

  16. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

  17. Kulshrestha, P., Rossman, F. G., Jr., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environmental Science & Technology, 38, 4097–4105.

  18. Langhammer, J. P. (1989). Untersuchungen zum Verbleib antimikrobiell wirksamer Arzneistoffe als Ru¨cksta¨nde in Gu¨ lle und im landwirtschaflichen Umfeld. PhD thesis, Rheinische Friedrich-Wilhelms-Universita¨t, Bonn.

  19. Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 4640–4646.

  20. Loke, M. L., Tjørnelund, J., & Halling-Sørensen, B. (2002). Determination of the distribution coefficient (log K d) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 48, 351–361.

  21. McCarthy, J. F., & Zachara, J. M. (1989). Subsurface transport of contaminants—Mobile colloids in the subsurface environment may alter the transport of contaminants. Environmental Science and Technology, 23, 496–502.

  22. Metcalf and Eddy (2004). Wastewater engineering treatment and reuse (4th ed.). New York: Mc-Graw Hill.

  23. Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L., & Wletsma, T. W. (1994). Interaction of hydrophobic organic compounds with mineral bound humic substances. Environmental Science and Technology, 28, 1291–1299.

  24. Oka, H. I., & Matsumoto, H. (2000). Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography, A882, 109–133.

  25. Parolo, M. E., Savini, M. C., Vallés, J. M., Baschini, M. T., & Avena, M. G. (2008). Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Applied Clay Science, 40, 179–186.

  26. Rabolle, M., & Spliid, N. H. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40, 715–722.

  27. Sacher, F., Lange, F. T. H., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography A, 938, 199–210.

  28. Sassman, S., & Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 39, 7452–7459.

  29. Schulten, M., & Schnitzer, H. R. (1997). Chemical model structures for soil organic matter and soils. Soil Science, 162, 115–130.

  30. Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2002). Environmental organic chemistry. New York: Wiley.

  31. Sithole, B. B., & Guy, R. D. (1987). Models for tetracycline in aquatic environments. I. Interaction with bentonite clay systems. Water, Air and Soil Pollution, 32, 303–314.

  32. Smith, J., Vigneswaran, S., Ngo, H., Ben-Aim, R., & Nguyen, H. (2005). Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor. Journal of Membrane Science, 255, 99–106.

  33. Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science & Technology, 39, 9009–9015.

  34. Ter Laak, T. L., Gebbink, W., & Tolls, J. (2006). The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology & Chemistry, 25(4), 904–911.

  35. Thiele, S. (2000). Adsorption of the antibiotic pharmaceutical compound sulfapyridine by long-term differently fertilized chernozem. Journal of Plant Nutrition and Soil Science, 163, 589–594.

  36. Thiele-Bruhn, S. (2003). Pharmaceutical antibiotics compounds in soils a review. Journal of Plant Nutrition and Soil Science, 166, 145–167.

  37. Thiele-Bruhn, S., Seibicke, T., Schulten, H. R., & Leinweber, P. (2004). Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. Journal of Environmental Quality, 33(4), 1331–1342.

  38. Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science and Technology, 2001(35), 3397–3406.

  39. Zwiener, C., & Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34, 1881–1885.

Download references

Acknowledgments

The authors gratefully acknowledge the Porter School for Environmental Studies (PSES) at Tel-Aviv University for their financial support and Professor Giora Rytwo for his essential comments.

Author information

Correspondence to Dror Avisar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avisar, D., Primor, O., Gozlan, I. et al. Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay. Water Air Soil Pollut 209, 439–450 (2010). https://doi.org/10.1007/s11270-009-0212-8

Download citation

Keywords

  • Sorption
  • Montmorillonite clay
  • Antibiotics
  • Pharmaceutical contaminants
  • Wastewater effluent