Water, Air, and Soil Pollution

, Volume 208, Issue 1–4, pp 129–151 | Cite as

Regionalization of Magnetic Susceptibility Measurements Based on a Multiple Regression Approach

  • Christine FürstEmail author
  • Dietmar Zirlewagen
  • Carsten Lorz


The article presents results of a case study in northeastern Germany, where magnetic susceptibility assessment was carried out at grid-wise field measurements. The measurements were clustered into three different depth levels, which represent the humus layer, the transition zone between humus layer and mineral horizon, and the mineral horizon. Taking these three depth levels, a multiple regression-based regionalization approach was applied, testing and using additional environmental parameters derived from geology, topography, and stand type with the aim to develop a comprehensive model for spatial variability of magnetic susceptibility. Spatial variation of magnetic susceptibility was predicted with a high precision by the multiple linear regression models. A slightly differing set of model parameters was selected for the single depth levels. In tendency, magnetic susceptibility values in depth level 6–10 cm were best explained by the distance to Bitterfeld and by soil properties. In depth level 11–15 cm, variables which describe the orographic conditions and stand properties gain in importance. In depth level 21–25 cm, variables indicating soil and site properties disappear completely. Here, aspect and land surface characteristics play a major role together with stand properties. A spatial stratification of the model for a distance of up to 25 km to the former emitters provided a further improvement of the model quality considering the prediction of small-scale variations of magnetic susceptibility.


Fly ash Magnetic susceptibility assessment Regionalization of magnetic susceptibility Multiple regression Stepwise model parameter selection 



The measurements were carried out in the context of the research project “ENFORCHANGE” (, which was funded by the German Federal Ministry of Education and Research (BMBF) in the program “Research for Sustainability”. The authors wish to thank also Dr. Abiy Mengistu, Stephan Just, and Kay Hagemann for supporting the magnetic susceptibility field assessments and especially Dr. Abiy Mengistu for the fruitful methodological discussions.


  1. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2000). Multivariate Analysemethoden: Eine Anwendungsorientierte Einführung. Berlin: Springer. 661 p.Google Scholar
  2. Brand, D. G. (1997). Criteria and indicators for the conservation and sustainable forest management of forests: Progress to date and future direction. Biomass and Bioenergy, 13(4–5), 247–253.CrossRefGoogle Scholar
  3. Boyko, T., Scholger, R., & Stanjek, H. (2004). Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: Repeatability of in situ measurements. Journal of Applied Geophysics, 55, 249–259.CrossRefGoogle Scholar
  4. Fialova, H., Maier, G., Petrovsky, E., Kapicka, A., Boyko, T., & Scholger, R. (2006). Magnetic properties of soils from sites with different geological and environmental settings. Journal of Applied Geophysics, 59(4), 273–283.CrossRefGoogle Scholar
  5. Fritz, H., & Makeschin, F. (2007). Chemische Eigenschaften von flugaschebeeinflussten Böden der Dübener Heide. Archiv für Naturschutz und Landschaftsforschung, 46(3), 105–120.Google Scholar
  6. Fürst, C., & Makeschin, F. (2006). Comparison of wood ash, rock powder, and fly ash—a review. In C. Fürst (Ed.), Future-oriented concepts, tools and methods for forest management and forest research crossing European borders. Contributions to Forest Sciences 28 (pp. 63–80). Stuttgart: Ulmer.Google Scholar
  7. Fürst, C., Lorz, C., Abiy, M., Makeschin, F., et al. (2006). Fly ash deposition in north eastern Germany and consequences for forest management. In C. Fürst (Ed.), Future-oriented concepts, tools and methods for forest management and forest research crossing European borders. Contributions to Forest Sciences 28 (pp. 50–62). Stuttgart: Ulmer.Google Scholar
  8. Fürst, C., Lorz, C., & Makeschin, F. (2007a). Development of forest ecosystems after heavy deposition loads considering Dübener Heide as example—challenges for a process-oriented forest management planning. For Ecol Manag, 248(1–2), 6–16.CrossRefGoogle Scholar
  9. Fürst, C., Vacik, H., Lorz, C., et al. (2007b). Meeting the challenges of process-oriented forest management. For Ecol Manag, 248(1–2), 1–5.CrossRefGoogle Scholar
  10. Fürst, C., Lorz, C., & Makeschin, F. (2009). Testing a soil magnetometry technique in a highly polluted industrial region in north-eastern Germany. Water, Air, and Soil Pollution, . doi: 10.1007/s11270-008-9956-9.Google Scholar
  11. Goldberg, E. D. (1985). Black carbon in the environment: properties and distribution. New York: Wiley. 198 p.Google Scholar
  12. Goluchowska, B. J. (2001). Some factors affecting an increase in magnetic susceptibility of cement dusts. Journal of Applied Geophysics, 48(2), 103–112.CrossRefGoogle Scholar
  13. Grimley, D. A., Arruda, N. K., & Bramstedt, M. W. (2004). Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. Catena, 58(2), 183–213.Google Scholar
  14. Hansen, K., Vesterdal, L., Bastrup-Birk, A., & Bille-Hansen, J. (2007). Are indicators for critical load exceedance related to forest condition? Water, Air, and Soil Pollution, 183, 293–308.CrossRefGoogle Scholar
  15. Hickey, G. M., Innes, J. L., Kozak, R. A., Bulla, G. Q., & Vertinsky, I. (2005). Monitoring and information reporting for sustainable forest management: An international multiple case study analysis. For Ecol Manag, 209(3), 237–259.CrossRefGoogle Scholar
  16. Klose, S., & Makeschin, F. (2003). Effects of past fly ash deposition on the forest floor humus chemistry of pine stands in northeastern Germany. For Ecol Manag, 183(1–3), 113–126.CrossRefGoogle Scholar
  17. Klose, S., & Makeschin, F. (2005). Soil properties in coniferous forest stands along a fly ash deposition gradient in eastern Germany. Pedosphere, 15(6), 681–694.Google Scholar
  18. Klose, S., Wernecke, K. D., & Makeschin, F. (2003). Microbial biomass and enzyme activities in coniferous forest soils as affected by lignite-derived deposition. Biology and Fertility of Soils, 38, 32–44.CrossRefGoogle Scholar
  19. Koch, J., Klose, S., & Makeschin, F. (2002). Stratigraphic and spatial differentiation of chemical properties in long-term fly ash influenced forest soils in the Dübener Heide Region, NE-Germany. Forstwissenschaftliches Centralblatt, 121, 157–170.CrossRefGoogle Scholar
  20. Lu, S. G., & Bai, S. Q. (2006). Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. Journal of Applied Geophysics, 60(1), 1–12.CrossRefGoogle Scholar
  21. Lux, H. (1965). Die großräumige Abgrenzung von Rauchschadenszonen im Einflussbereich des Industriegebietes um Bitterfeld. Wissenschaftliche Zeitung Der Technischen Universität Dresden, 14, 433–442.Google Scholar
  22. Magiera, T., & Strzyszcz, Z. (2000). Ferrimagnetic minerals of anthropogenic origin in soils of some Polish national parks. Water, Air, and Soil Pollution, 124, 37–48.CrossRefGoogle Scholar
  23. Magiera, T., & Zawadzki, J. (2007). Using of high-resolution topsoil magnetic screening for assessment of dust deposition: comparison of forest and arable soil datasets. Environmental Monitoring and Assessment, 125, 19–28.CrossRefGoogle Scholar
  24. Magiera, T., Strzyszcz, Z., & Kostecki, M. (2002). Seasonal changes of magnetic susceptibility in sediments from Lake Zywiec (south Poland). Water, Air, and Soil Pollution, 141, 55–71.CrossRefGoogle Scholar
  25. Magiera, T., Strzyszcz, Z., & Rachwal, M. (2007). Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. For Ecol Manag, 248(1–2), 36–42.CrossRefGoogle Scholar
  26. McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2), 67–94.CrossRefGoogle Scholar
  27. Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.CrossRefGoogle Scholar
  28. Morvan, X., Saby, N. P. A., Arrouays, D., et al. (2008). Soil monitoring in Europe: A review of existing systems and requirements for harmonization. Science of the Total Environment, 391(1), 1–12.CrossRefGoogle Scholar
  29. Riley, J. (2001). Multidisciplinary indicators of impact and change: Key issues for identification and summary. Agriculture, Ecosystems & Environment, 87(2), 245–259.CrossRefGoogle Scholar
  30. Schibler, L., Boyko, T., Ferdyn, M., Gajda, B., Höll, S., Jordanova, N., et al. (2002). Topsoil magnetic susceptibility mapping: Data reproducibility and compatibility, measurement strategy. Studia Geophysica et Geodaetica, 46, 43–57.CrossRefGoogle Scholar
  31. Slocombe, D. S. (1998). Defining goals and criteria for ecosystem-based management. Environmental Management, 22(4), 483–493.CrossRefGoogle Scholar
  32. Strzyszcz, Z. (1999). Heavy metal contamination in mountain soils of Poland as a result of anthropogenic pressure. Biology Bulletin, 26(6), 722–735.Google Scholar
  33. Strzyszcz, Z., & Magiera, T. (2001). Record of industrial pollution in Polish ombrotrophic peat bogs. Physics and Chemistry of the Earth, 26, 859–866.CrossRefGoogle Scholar
  34. Strzyszcz, Z., Magiera, T., & Heller, F. (1996). The influence of industrial immissions on the magnetic susceptibility of soils in Upper Silesia. Studia Geophysica et Geodaetica, 40, 276–286.CrossRefGoogle Scholar
  35. Strzyszcz, Z., & Magiera, T. (1998). Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Physics and Chemistry of the Earth, 23(9–10), 1127–1131.CrossRefGoogle Scholar
  36. Wang, X. S., & Qin, Y. (2005). Correlation between magnetic susceptibility and heavy metals in urban topsoil: A case study from the city of Xuzhou, China. Environmental Geology, 49(1), 10–18.CrossRefGoogle Scholar
  37. Zawadzki, J., Fabijanczyk, P., & Magiera, T. (2007). The influence of forest stand and organic horizon development on soil surface measurement of magnetic susceptibility. Polish Journal of Soil Science, XL(2), 113–124.Google Scholar
  38. Zawadzki, J., Magiera, T., & Fabijanczyk, P. (2009). Geostatistical evaluation of magnetic indicators of forest soil contamination with heavy metals. Studia Geophysica et Geodaetica, 53, 133–149.CrossRefGoogle Scholar
  39. Zirlewagen, D., & von Wilpert, K. (2004). Using model scenarios to predict and evaluate forest management impacts on soil base saturation at landscape level. European Journal of Forest Research, 123, 269–282.CrossRefGoogle Scholar
  40. Zirlewagen, D., Raben, G., Weise, M., et al. (2006). Use of regionalization techniques for zoning of forest damages. In C. Fürst (Ed.), Future-oriented concepts, tools and methods for forest management and forest research crossing European borders. Contributions to Forest Sciences 28 (pp. 233–240). Stuttgart: Ulmer.Google Scholar
  41. Zirlewagen, D., Raben, G., & Weise, M. (2007). Zoning of forest health conditions based on a set of soil, topographic and vegetation parameters. For Ecol Manag, 248(1–2), 43–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christine Fürst
    • 1
    Email author
  • Dietmar Zirlewagen
    • 2
  • Carsten Lorz
    • 1
  1. 1.Institute for Soil Science and Site EcologyDresden University of TechnologyTharandtGermany
  2. 2.INTERRA—Bureau for Environmental MonitoringKenzingenGermany

Personalised recommendations