Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Removal of Nickel by Means of Micellar-Enhanced Ultrafiltration (MEUF) Using Two Anionic Surfactants

Abstract

Micellar-enhanced ultrafiltration (MEUF) is an effective separation technique for removing metal ions from aqueous environments. The critical micellar concentration (CMC) of two anionic surfactants, sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS), was determined by means of conductometry. The effects of pH, conductivity, and surfactant concentration on the permeate flow, retention of surfactants and nickel by MEUF, was studied. Results showed that for surfactant concentrations beyond the CMC, Ni(II) retention with SDS was slightly higher than with LAS (S/M = 45: Ni(II) retention was 70% and 55% for SDS and LAS, respectively). LAS surfactant was always retained in higher quantities than SDS. An increase in conductivity produced large reduction in Ni(II) retention and slightly increased surfactant retention. pH values between 4 and 8 did not affect nickel retention but enhanced the SDS and LAS surfactant retentions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akita, S., Castillo, L. P., Nii, S., Takahashi, K., & Takeuchi, H. (1999). Separation of Co(II)/Ni(II) via micellar-enhanced ultrafiltration using organophosphorus acid extractant solubilized by nonionic surfactant. Journal of Membrane Science, 162(1–2), 111–117.

  2. Aoudia, M., Allal, N., Djennet, A., & Toumi, L. (2003). Dynamic micellar enhanced ultrafiltration: Use of anionic (SDS)-nonionic (NPE) system to remove Cr3+ at low surfactant concentration. Journal of Membrane Science, 217(1–2), 181–192.

  3. Baek, K., & Yang, J. W. (2004). Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: Competitive binding. Journal of Hazardous Materials, 108(1–2), 119–123.

  4. Belitz, H. D., Grosch, W., & Schieberle, P. (2001). Lehrbuch der lebensmittelchemie. Berlin: Springer. ISBN: 3-540-41096-15.

  5. Cañizares, P., Pérez, A., & Camarillo, R. (2002). Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: Calculation of design parameters. Desalination, 144(1–3), 279–285.

  6. Celaya, R. J., Noriega, J. A., Yeomans, J. H., Ortega, L. J., & Ruiz-Manriquez, A. (2000). Biosorption of Zn(II) by Thiobacillus ferrooxidans. Bioprocess Engineering, 22(6), 539–542.

  7. Chang, Y. K., Shih, P. H., Chiang, L. C., Chen, T. C., Lu, H. C., & Chang, J. E. (2007). Removal of heavy metal by insoluble starch xanthate. Environmental Informatics, 5, 684–689.

  8. Guohua, C., Xijun, C., Po-Lock, Y., & Yongli, M. (1997). Treatment of textile desizing wastewater by pilot scale nanofitlration membrane separation. Journal of Membrane Science, 127(1), 93–99.

  9. Feng, D., Aldrich, C., & Tan, H. (2000). Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering, 13(6), 623–642.

  10. Fillipi, B. R., Scamehorn, J. F., Christian, S. D., & Taylor, R. W. (1998). A comparative economic analysis of copper removal from water by ligand-modified micellar-enhanced ultrafiltration and by conventional solvent extraction. Journal of Membrane Science, 145(1), 27–44.

  11. Fuguet, E., Ràfols, C., Rosés, M., & Bosch, E. (2005). Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Analytica Chimica Acta, 548(1–2), 95–100.

  12. García, M. T., Campos, E., Dalmau, M., Ribosa, I., & Sanchez-Leal, J. (2002). Structure—activity relationships for association of linear alkylbenzene sulfonates with activated sludge. Chemosphere, 49, 279–286.

  13. Huang, Y. C., Batchelor, B., & Koseoglu, S. S. (1994). Crossflow surfactant-based ultrafiltration of heavy metals from waste streams. Separation Science and Technology, 29(15), 1979–1998.

  14. Juang, R. S., Xu, Y. Y., & Chen, C. L. (2003). Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Journal of Membrane Science, 218(1–2), 257–267.

  15. Karate, V. D., & Marathe, K. V. (2008). Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. Journal of Hazardous Materials, 157, 464–471.

  16. Lindberg, M., & Gräslund, A. (2001). The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR. FEBS Letters, 497(1), 39–44.

  17. Liu, C. K., Li, C. W., & Lin, C. Y. (2004). Micellar-enhaced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands. Chemosphere, 57(7), 629–634.

  18. Majewska-Nowak, K., Kowalska, I., & Kabsch-Korbutowicz, M. (2005). Ultrafiltration of SDS solutions using polymeric membranes. Desalination, 184(1–3), 415–422.

  19. Marques, P. A. S. S., Rosa, M. F., & Pinheiro, H. M. (2000). pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 23(2), 135–141.

  20. Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36(19), 4757–4764.

  21. Mohammadi, T., Moheb, A., Sadrzadeh, M., & Razmi, A. (2005). Modeling of metal ion removal from wastewater by electrodialysis. Separation and Purification Technology, 41(1), 73–82.

  22. Myers, D. (2005). Surfactant science and technology (3rd ed.). New York: Wiley-VCH.

  23. Pardo, F., & Marañon, E. (1997). Contaminación química de las aguas. Ed. FICYT, Contaminación e ingeniería ambiental. Oviedo, 111.6, 154–188.

  24. Paton-Morales, P., & Talens-Alesson, F. I. (2001). Effect of ionic strength and competitive adsorption of Na+ on the Flocculation of Lauryl Sulfate Micelles with Al3+. Langmuir, 17, 6059–6064.

  25. Paton-Morales, P., & Talens-Alesson, F. I. (2002). Effect of competitive adsorption of Zn2+ on the flocculation of lauryl sulfate micelles by Al3+. Langmuir, 18, 8295–8301.

  26. Patterson, J. W. (1985). Industrial wastewater treatment technology (2nd ed.). Stoneham: Butterorth Publisher.

  27. Purkait, M. K., DasGupta, S., & De, S. (2005). Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures. Journal of Colloid and Interface Science, 285, 395–402.

  28. Qdais, H. A., & Moussa, H. (2004a). Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination, 16(1), 105–110.

  29. Qdais, H. A., & Moussa, H. (2004b). Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination, 164(2), 105–110.

  30. Rafati, A. A., Gharibi, H., & Rezaie-Sameti, M. (2004). Investigation of the aggregation number, degree of alcohol attachment and premicellar aggregation of sodium dodecyl sulfate in alcohol–water mixtures. Journal of Molecular Liquids, 111, 109–116.

  31. Samper, E., Rodríguez, M., De la Rubia, M. A., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (meuf) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology, 65(3), 337–342.

  32. Satsuki, T., Umehara, K., & Yoneyama, Y. (1992). Performance and physicochemical properties of a-Sulfo fatty acid methyl esters. Journal of the American Oil Chemists' Society, 69(7), 672–677.

  33. Scamehorn, J. F., & Harwell, J. H. (1989). Surfactant-based separation processes. New York: Marcel Dekker.

  34. Talens-Alesson, F. I., Urbaski, R., & Szymanowski, J. (2001). Evolution of resistance to permeation during micellar enhanced ultrafiltration of phenol and 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1–3), 71–77.

  35. Tung, C. C., Yang, Y. M., Chang, C. H., & Maa, J. R. (2002). Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Management, 22(7), 695–701.

  36. Urbanski, R., Góralska, E., Bart, H. J., & Szymanowski, J. (2002). Ultrafiltration of surfactant solutions. Journal of Colloid and Interface Science, 253, 419–426.

  37. Volesky, B. (1990). Biosorption of heavy metals. Boca Raton: CRC.

  38. Wang, Y., Combe, C., & Clark, M. M. (2001). The effects of pH and calcium on the diffusion coefficient of humic acid. Journal of Membrane Science, 183(1), 49–60.

  39. Yang, J.-S., Baek, K., & Yang, J.-W. (2005). Crossflow ultrafiltration of surfactant solutions. Desalination, 184(1–3), 385–394.

  40. Yurlova, L., Kryvoruchko, A., & Kornilovich, B. (2002). Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination, 144(1–3), 255–260.

Download references

Acknowledgements

This study was financial supported by the Consellería de Cultura, Educación y Deporte of the Generalitat Valenciana (ref. GRUPOS04/073).

Author information

Correspondence to Irene Sentana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Samper, E., Rodríguez, M., Sentana, I. et al. Removal of Nickel by Means of Micellar-Enhanced Ultrafiltration (MEUF) Using Two Anionic Surfactants. Water Air Soil Pollut 208, 5–15 (2010). https://doi.org/10.1007/s11270-009-0145-2

Download citation

Keywords

  • Micellar-enhanced ultrafiltration
  • Nickel removal
  • SDS
  • LAS