Skip to main content
Log in

Preparation, Characterization, and Environmental Application of Crosslinked Chitosan-Coated Bentonite for Tartrazine Adsorption from Aqueous Solutions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite (CCB) beads for tartrazine adsorption have been investigated. CCB beads were characterized by using Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), and Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore size distribution analyses were also determined. The values of pH of the aqueous slurry and pH of zero point charge (pHZPC) were almost equal. The adsorption at equilibrium of tartrazine was found to be a function of pH of the solution, stirring rate, contact time, and tartrazine concentration. The optimum conditions for tartrazine adsorption were pH 2.5, stirring rate of 400 rpm and contact time of 80 min. Pseudo-first-order and pseudo-second-order models were used to analyze the kinetics of adsorption with the latter found to agree well with the kinetics data, suggesting that the rate determining step may be chemisorption. The two most common isotherm models, Langmuir and Freundlich, were used to describe the adsorption equilibrium data. On the basis of Langmuir isotherm model, the maximum adsorption capacities were determined to be 250.0, 277.8, and 294.1 mg g−1 at 300, 310, and 320 K, respectively. Desorption studies were carried out at different concentrations of EDTA, H2SO4, and NaOH. All desorbing solutions showed poor recovery of tartrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Degs, Y. S., El-Barghouthi, M. I., El-Shiekh, A. H., & Walker, G. M. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77, 16–23. doi:10.1016/j.dyepig.2007.03.001.

    Article  CAS  Google Scholar 

  • Bekçi, Z., Özveri, C., Seki, Y., & Yurdakoç, K. (2008). Sorption of malachite green on chitosan bead. Journal of Hazardous Materials, 154, 254–261. doi:10.1016/j.jhazmat.2007.10.021.

    Article  Google Scholar 

  • Boddu, V. M., Abburi, K., Tallbott, J. L., & Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science & Technology, 37, 4449–4456. doi:10.1021/es021013a.

    Article  CAS  Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., & Haasch, R. (2008). Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent. Water Research, 43, 633–642. doi:10.1016/j.watres.2007.08.014.

    Article  Google Scholar 

  • Chang, M. Y., & Juang, R. S. (2004). Adsorption of tannic acid, humic acid and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 278, 18–25. doi:10.1016/j.jcis.2004.05.029.

    Article  CAS  Google Scholar 

  • Chen, J. P., Wu, S., & Chong, K. (2003). Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 41, 1979–1986. doi:10.1016/S0008-6223(03)00197-0.

    Article  CAS  Google Scholar 

  • Crini, G. (2008). Kinetic and equilibrium studies on the removal dyes from aqueous solution by adsorption onto cyclodextrin polymer. Dyes and Pigments, 77, 415–426. doi:10.1016/j.dyepig.2007.07.001.

    Article  CAS  Google Scholar 

  • Eren, E., & Afsin, B. (2008). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. Dyes and Pigments, 76, 220–225. doi:10.1016/j.dyepig.2006.08.019.

    Article  Google Scholar 

  • Fan, D., Zhu, X., Xu, M., & Yan, J. (2006). Adsorption properties of chromium (VI) by chitosan coated montmorillonite. The Journal of Biological Sciences, 6, 941–945. doi:10.3923/jbs.2006.941.945.

    Article  CAS  Google Scholar 

  • Gecol, H., Miakatsindila, P., Ergican, E., & Hiibel, S. R. (2006). Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination, 197, 165–178. doi:10.1016/j.desal.2006.01.016.

    Article  CAS  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd ed.). London: Academic.

    Google Scholar 

  • Guibal, E., Vincent, T., & Mendoza, R. N. (2000). Synthesis and characterization of thiourea derivative of chitosan for platinum recovery. Journal of Applied Polymer Science, 75, 119–134. doi:10.1002/(SICI)1097-4628(20000103)75:1<119::AID-APP14>3.0.CO;2-E.

    Article  Google Scholar 

  • Hameed, B. H., Ahmad, A. L., & Latiff, K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75, 143–149. doi:10.1016/j.dyepig.2006.05.039.

    Article  CAS  Google Scholar 

  • Hasan, S., Krishnaiah, A., Ghosh, T. K., Viswanath, D. S., Boddu, V. M., & Smith, E. D. (2006). Adsorption of divalent cadmium (Cd(II)) from aqueous solutions onto chitosan-coated perlite beads. Industrial & Engineering Chemistry Research, 45, 5066–5077. doi:10.1021/ie0402620.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetics models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. doi:10.1205/095758298529696.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto spaghnum moss peat. Water Research, 34, 735–742. doi:10.1016/S0043-1354(99)00232-8.

    Article  CAS  Google Scholar 

  • Kalyani, S., Priya, J. A., Rao, P. S., & Krishnaiah, A. (2005). Removal of copper and nickel from aqueous using chitosan coated on perlite as biosorbent. Separation Science and Technology, 40, 1483–1495. doi:10.1081/SS-200055940.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278. doi:10.1016/j.dyepig.2005.12.006.

    Article  CAS  Google Scholar 

  • Mittal, A., Krishnan, L., & Gupta, V. K. (2005). Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Separation and Purification Technology, 43, 125–133. doi:10.1016/j.seppur.2004.10.010.

    Article  CAS  Google Scholar 

  • Mittal, A., Kurup, L., & Mittal, J. (2006). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, tartrazine from aqueous solutions using waste materials—bottom ash and de-oiled soya, as adsorbents. Journal of Hazardous Materials, 136, 567–578. doi:10.1016/j.jhazmat.2005.12.037.

    Article  CAS  Google Scholar 

  • Mittal, A., Kurup, L., & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 146, 243–248. doi:10.1016/j.jhazmat.2006.12.012.

    Article  CAS  Google Scholar 

  • Monser, L., & Adhoum, N. (2008). Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III). Journal of Hazardous Materials, 161, 263–269. doi:10.1016/j.jhazmat.2008.03.120.

    Article  Google Scholar 

  • Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., & González Beça, C. G. (1999). Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Research, 33, 979–988. doi:10.1016/S0043-1354(98)00294-2.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., & Ho, Y. S. (2007). Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes and Pigments, 72, 60–66. doi:10.1016/j.dyepig.2006.01.014.

    Article  Google Scholar 

  • Ravikumar, K., Krishnan, S., Ramalingam, S., & Balu, K. (2007). Optimization of process variables by the application of response surface methodology for dye removal using a novel biosorbent. Dyes and Pigments, 72, 66–74. doi:10.1016/j.dyepig.2005.07.018.

    Article  Google Scholar 

  • Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krisnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72, 261–271. doi:10.1016/j.carbpol.2007.08.010.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Fathinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143, 62–72. doi:10.1016/j.cej.2007.12.006.

    Article  Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39, 521–530. doi:10.1016/j.bej.2007.11.006.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., Ghani, S. A., & Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96, 443–450. doi:10.1016/j.biortech.2004.05.022.

    Article  CAS  Google Scholar 

  • Wang, L., & Wang, A. (2007). Adsorption characteristic of congo red onto the chitosan/montmorillonite nanocomposite. Journal of Hazardous Materials, 147, 979–985. doi:10.1016/j.jhazmat.2007.01.145.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., & Hubicki, Z. (2009). Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. Journal of Hazardous Materials, 164, 502–509. doi:10.1016/j.jhazmat.2008.08.021.

    Article  CAS  Google Scholar 

  • Yang, Z., & Yuan, Y. (2001). Studies on the synthesis and properties of hydroxyl azacrown ether-grafted chitosan. Journal of Applied Polymer Science, 82, 1838–1843. doi:10.1002/app.2026.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to the Universiti Sains Malaysia (Grant No. 304/229/PKIMIA/638166) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Saime Wan Ngah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan Ngah, W.S., Ariff, N.F.M. & Hanafiah, M.A.K.M. Preparation, Characterization, and Environmental Application of Crosslinked Chitosan-Coated Bentonite for Tartrazine Adsorption from Aqueous Solutions. Water Air Soil Pollut 206, 225–236 (2010). https://doi.org/10.1007/s11270-009-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0098-5

Keywords

Navigation