Water, Air, and Soil Pollution

, Volume 206, Issue 1–4, pp 155–174 | Cite as

Distribution of Trace Elements in Sediments and Biota of Songkhla Lake, Southern Thailand

  • Siriporn Pradit
  • Gullaya Wattayakorn
  • Saowapa Angsupanich
  • Willy Baeyens
  • Martine LeermakersEmail author


The concentrations of Co, Ni, Cu, Zn, Cd, Pb, As, Fe, Mn, and Al were determined in sediments and biota of Songkhla Lake, a shallow coastal lagoon located in southern Thailand. In June 2006, surface sediments were sampled in 44 stations in the three sections of the lake (inner-, middle-, and outer sections). Sediment cores were also sampled in 13 stations in three cross-sections of the lake. In surface sediments, trace and major elements, organic matter, sediment grain size analysis, and sulfides were determined, and in the sediment cores, redox profiles were made. Soil samples were also collected at garbage dumping sites in the vicinity of the lake. In addition, the metal accumulation in two catfish species (Arius maculatus and Osteogeneiosus militaris) and the crustacean (Apseudes sapensis) was also investigated. Trace element concentrations in sediments of Songkhla Lake show that, especially the Outer section of the lake, in particular the sediments at the mouths of the Phawong, U-Taphao, and Samrong Canals are significantly enriched with trace elements due to municipal, agricultural, and industrial discharges entering the lake through the canals. Aluminum-normalized enrichment factors throughout the lake vary from 0.4 to 1.7 for Ni, 0.3 to 3.3 for Cu, 0.2 to 7 for Zn, 0.1 to 14 for As, 1 to 24 for Cd, 0.7 to 6.8 for Pb, and 0.1 to 7.8 for Mn. Correlations between the elements and sediment characteristics show that Cu, Zn, Cd, and Pb are essentially associated with the sulfide fraction; that Ni and Co are predominantly bound to the clay minerals and iron oxy-hydroxides, and that As is principally bound to iron oxy-hydroxides. The accumulation of trace elements between muscle tissue and liver and eggs of A. maculatus and O. militaris is element-specific, but concentrations of trace elements in fish muscle tissue are well within the limits for human consumption.


Trace metals Arsenic Sediments Fish Crustacae Sulfides Lagoon Songkhla Lake 



The work described in this paper is supported by a Ph.D. Scholarship from the Flemish Interuniversity Council (VLIR) in Belgium. I would like to thank Dr. Charumas Meksumpan for advice on TAVS analysis, Yue Gao for assistance in lab work in Belgium, and Sakya Pradit for his assistance in the fieldwork and lab work in Thailand.


  1. Ali, M. H. H., & Fishar, M. R. A. (2005). Accumulation of trace metals in some benthic invertebrates and fish species relevant to their concentration in water and sediment of Lake Qarun, Egypt. Egyptian Journal of Aquatic Research, 31(1), 289–301.Google Scholar
  2. Angsupanich, S., Somsak, S., & Phrommoon, J. (2005). Stomach contents of the catfishes Osteogeneiosus militaris (Linnaeus, 1758) and Arius maculatus (Thunberg, 1792) in the Songkhla Lake. Songklanakarin Journal of Science and Technology, 27, 391–402.Google Scholar
  3. Baeyens, W., Gao, Y., De Galan, S., Bilau, M., Van Larebeke, N., & Leermakers, M. (2009). Dietary exposure to total and toxic As in Belgium: Importance of As speciation in North Sea fish. Molecular Nutrition & Food Research . doi: 10.1002/mnfr.200700533.Google Scholar
  4. Baudo, R., & Muntau, H. (1990). Lesser known in-place pollutants and diffuse source problems. In R. Baudo, J. P. Giesy & H. Muntau (Eds.), Sediment: Chemistry and toxicity of in-place pollutants (pp. 1–14). USA: Lewis Publishers.Google Scholar
  5. Bellucci, G. L., Frignani, M., Paolucci, D., & Ravanelli, M. (2002). Distribution of heavy metals in sediments of the Venice Lagoon: The role of the industrial area. The Science of the Total Environment, 295, 35–49. doi: 10.1016/S0048-9697(02)00040-2.CrossRefGoogle Scholar
  6. Bhongsuwan, T., & Bhongsuwan, D. (2002). Concentration of heavy metals, Mn, Fe, Ni, Pb, Cr and Cd in bottom sediments of the outer Songkhla Lake deposited between the year B.E.2520–2538. Songklanakarin Journal of Science and Technology, 24, 89–106.Google Scholar
  7. Billon, G., Ouddance, B., & Boughriet, A. (2001). Artefacts in the speciation of sulfides in anoxic sediments. Analyst (London), 126, 1805–1809. doi: 10.1039/b104704n.CrossRefGoogle Scholar
  8. Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution, 76, 9–131. doi: 10.1016/0269-7491(92)90099-V.CrossRefGoogle Scholar
  9. Buccolieri, A., Buccolieri, G., Cardellicchio, N., Atti, A. D., Leo, A. D., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99, 227–235. doi: 10.1016/j.marchem.2005.09.009.CrossRefGoogle Scholar
  10. Chareonpanich, C., & Seurungreong, S. (1999). Some physical and Chemical Characteristics of Bottom Sediments in the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia. Proceedings of the first technical seminar on marine fishery resources survey in the South China Sea area I: Gulf of Thailand and East Coast of Peninsular Malaysia, 24-26 November 1997, Bangkok, Thailand, pp.12-33.Google Scholar
  11. Chareonpanich, C., Montani, S., Tsutsumi, H., & Matsuoka, S. (1993). Modification of chemical characteristics of organically enriched sediment by Capitella sp. Marine Pollution Bulletin, 26, 375–379. doi: 10.1016/0025-326X(93)90184-L.CrossRefGoogle Scholar
  12. Cheevaporn, V., & San Diego-McGlone, M. L. (1997). Aluminium normalization of heavy-metal data from estuarine and coastal sediments of the Gulf of Thailand. Thammasat International Journal of Science and Technology, 2, 37–46.Google Scholar
  13. Choi, K. Y., Kim, S. H., & Chon, H. T. (2008). Distribution and accumulations of heavy metals in the sediments of harbors and coastal areas in Korea. Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes (GREAT 200!), November 24-26 2008, Bangkok, Thailand, pp. 474-476.Google Scholar
  14. De Gieter, M., Leermakers, M., Van Ryssen, R., Noyen, J., Goeyens, L., & Baeyens, W. (2002). Total and toxic arsenic levels in North Sea Fish. Archives of Environmental Contamination and Toxicology, 43, 406–417. doi: 10.1007/s00244-002-1193-4.CrossRefGoogle Scholar
  15. EC. (2001). Comission Regulation No. 466/2001 of 8 March 2001. Official journal of European Communities 1.77/1.Google Scholar
  16. FAO. (1983). Compilation of legal limits for hazardous subnstance in fish and fishery products (Food and agricultural organization) FAO fishery circular, No. 464, 5-100.Google Scholar
  17. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: A case study. The Science of the Total Environment, 330, 115–129. doi: 10.1016/j.scitotenv.2004.03.038.CrossRefGoogle Scholar
  18. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Method of soil analysis part 1: Physical and mineralogical methods (pp. 383–412). Wisconsin: Madison Publisher.Google Scholar
  19. Hallare, A. V., Kosmehl, T., Schulze, T., Hollert, H., Kohler, H. R., & Triebskorn, R. (2005). Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. The Science of the Total Environment, 347, 254–271. doi: 10.1016/j.scitotenv.2004.12.002.CrossRefGoogle Scholar
  20. Herreweghe, S. V., Swennen, R., Cappuyns, V., & Vandecasteele, C. (2002). Chemical associations of heavy metals and metalloids in contaminated soils near former ore treatment plants: A differentiated approach with emphasis on pHstat-leaching. Journal of Geochemical Exploration, 76, 113–138. doi: 10.1016/S0375-6742(02)00232-7.CrossRefGoogle Scholar
  21. Langston, W. J., & Spence, S. K. (1995). Biological factors involved in metal concentrations observed in aquatic organisms. In A. Tessier & D. Turner (Eds.), Metal speciation and bioavalability in aquatic systems. West Sussex, England: John Wiley & Sons.Google Scholar
  22. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283. doi: 10.1016/0012-8252(92)90001-A.CrossRefGoogle Scholar
  23. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi: 10.1007/s002440010075.CrossRefGoogle Scholar
  24. Maneepong, S. (1996). Distribution of heavy metals in sediments from outer part of Songkhla Lagoon, southern Thailand. Songklanakarin Journal of Science and Technology, 18, 87–97.Google Scholar
  25. Maneepong, S., & Angsupanich, S. (1999). Concentration of arsenic and heavy metals in sediment and aquatic fauna from the outer Songkhla Lagoon, Phawong and U Taphao Canals. Songklanakarin Journal of Science and Technology, 21, 111–121.Google Scholar
  26. Maneepong, S., & Rakeaw, S. (1998). Study of Chemical Properties of Sediments from Thale Noi and Thale Luang. Research report (in Thai). Prince of Songkla University, Thailand.Google Scholar
  27. Meksumpun, C., & Meksumpun, S. (1999). Polychaete–sediment relations in Rayong, Thailand. Environmental Pollution, 105, 447–456. doi: 10.1016/S0269-7491(98)00222-X.CrossRefGoogle Scholar
  28. Mendil, D., & Uluözlü, O. D. (2007). Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101, 739–745. doi: 10.1016/j.foodchem.2006.01.050.CrossRefGoogle Scholar
  29. Miao, S., DeLaune, R. D., & Jugsujinda, A. (2006). Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. The Science of the Total Environment, 371, 334–343. doi: 10.1016/j.scitotenv.2006.07.027.CrossRefGoogle Scholar
  30. Moqsud, M. A., Hayashi, S., Du, Y. J., & Suetsugu, D. (2006). Temporal variation of sulphide content, pH, salinity and oxidation-reduction potential of tidal flat mud in the Ariake Sea, Japan. Evironmental Informatics Archives, 4, 225–232.Google Scholar
  31. Morse, J. W., & Luther, G. W. (1999). Chemical influences on trace metal–sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373–3378. doi: 10.1016/S0016-7037(99)00258-6.CrossRefGoogle Scholar
  32. Nguyen, H. L., Leermakers, M., Osán, J., Török, S., & Baeyens, W. (2005). Heavy metals in Lake Balaton: Water column, suspended matter, sediment and biota. The Science of the Total Environment, 340, 213–230. doi: 10.1016/j.scitotenv.2004.07.032.CrossRefGoogle Scholar
  33. NOAA. (1999). Sediment quality guidelines developed for the National Status and Trends Program.
  34. Office of Natural Resources and Environmental Policy and Planning (ONEP).(2005). Master Plan for Songkhla Lake Basin Development. Final Report by Prince of Songkla University, Taksin University and Songkhla Rajabhat University.Google Scholar
  35. OSPAR. (1997) Contaminants in Sea Water, Biota and Sediment. Agreed Ecotoxicological Assessment Criteria for Trace Metals, PCBs, PAHs, TBT and some Organochlorine Pesticides. OSPAR Commission, meeting document No. OSPAR 97/15/1, Annexes 5 and 6.Google Scholar
  36. Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208. doi: 10.1016/j.marpolbul.2006.02.012.CrossRefGoogle Scholar
  37. Prudêncio, M. I., Gonzalez, M. I., Dias, M. I., Galan, E., & Ruiz, F. (2007). Geochemistry of sediments from El Melah lagoon (NE Tunisia): A contribution for the evaluation of anthropogenic inputs. Journal of Arid Environments, 69, 285–298. doi: 10.1016/j.jaridenv.2006.10.006.CrossRefGoogle Scholar
  38. Rickard, D., & Morse, J. W. (2005). Acid volatile sulfide (AVS). Marine Chemistry, 97, 141–197. doi: 10.1016/j.marchem.2005.08.004.CrossRefGoogle Scholar
  39. Ryu, J. H., Gao, S., Dahlgren, R. A., & Zierenberg, R. A. (2002). Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta, 66, 2981–2994. doi: 10.1016/S0016-7037(02)00897-9.CrossRefGoogle Scholar
  40. Salomons, W. (1998). Biogeodynamics of contaminated sediments and soils: Perspectives for future research. Journal of Geochemical Exploration, 62, 37–40. doi: 10.1016/S0375-6742(97)00063-0.CrossRefGoogle Scholar
  41. Sasayama, Y., Higashide, Y., Sakai, M., Matada, M., & Fukumori, Y. (2007). Relationship between the lifestile of Siboglinid (Pogonophoran) Polychaete, Oligobrachia mashikoi, and the total sulfide and nitrogen levels in its habitat. Zoological Science, 24, 131–136. doi: 10.2108/zsj.24.131.CrossRefGoogle Scholar
  42. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. NCEA-C-1282, EMASC-001. USEPA.Google Scholar
  43. Shazilli, N. A. M., Rashid, M. K. A., Husain, M. L., Nordin, A., & Ali, S. (1999). Trace Metals in the surface sediments of the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia. Proceedings of the first technical seminar on marine fishery resources survey in the South China Sea area I: Gulf of Thailand and East Coast of Peninsular Malaysia, 24-26 November 1997, Bangkok, Thailand, 1999:73-85.Google Scholar
  44. Silva, M. A. L., & Rezende, C. E. (2002). Behavior of selected micro and trace elements and organic matter in sediments of a freshwater system in south-east Brazil. The Science of the Total Environment, 292, 121–128. doi: 10.1016/S0048-9697(02)00034-7.CrossRefGoogle Scholar
  45. Sirinawin, W., & Sompongchaiyakul, P. (2005). Nondetrital and total metal distribution in core sediments from the U-Taphao Canal, Songkhla, Thailand. Marine Chemistry, 94, 5–16. doi: 10.1016/j.marchem.2004.07.007.CrossRefGoogle Scholar
  46. Sirinawin, W., Turner, W. S., & Kanatharana, P. (1998). Trace metals study in the Outer Songkla Lake, Thale Sap Songkla, a southern Thai estuary. Marine Chemistry, 62, 175–183. doi: 10.1016/S0304-4203(98)00042-5.CrossRefGoogle Scholar
  47. Sompongchaiyakul, P., & Sirinawin, W. (2007). Arsenic, chromium and mercury in surface sediment of Songkhla Lake system. Thailand. Asian Journal of Water Environmental Pollution, 4, 17–24.Google Scholar
  48. Sukapan, S., Sompongchaiyakul, P., & Khokiattiwong, S. (2006). Variation and Distribution of Mercury in the tissues of Aquatic Organisms Catching from Songkhla Lake. Proceedings of the NIE-SEAGA Conference on Sustainability and Southeast Asia, 28-30 November 2006, Singapore.Google Scholar
  49. Tsutsumi, H., & Kikuchi, T. (1983). Benthic ecological of a small cove with seasonal oxygen depletion caused by organic pollution. Journal of Amakusa Marine Biological Laboratory, 7, 17–40.Google Scholar
  50. UNEP. (1993). Guidelines for monitoring chemical contaminants in the sea using marine organisms (United Nations Environmental Program). Reference methods for marine pollution studies. Report 6; Athens.Google Scholar
  51. US EPA. (1989). Assessing human health risks from chemically contaminated fish and shellfish. A guidance manual. EPA-503/8-89-002.Google Scholar
  52. Winterlund, A., & Ingri, J. (1996). Redox cycling of iron and manganese in sediments of the Halix River Estuary, Northern Sweden. Aquatic Geochemistry, 2, 185–201. doi: 10.1007/BF00121631.CrossRefGoogle Scholar
  53. Yodnarasri, S., Montani, S., Tada, K., Shibanuma, S., & Yamada, T. (2008). Is there any seasonal variation in marine nematodes within the sediments of the intertidal zone? Marine Pollution Bulletin, 57, 149–154. doi: 10.1016/j.marpolbul.2008.04.016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Siriporn Pradit
    • 1
  • Gullaya Wattayakorn
    • 2
  • Saowapa Angsupanich
    • 3
  • Willy Baeyens
    • 1
  • Martine Leermakers
    • 1
    Email author
  1. 1.Laboratory of Analytical and Environmental ChemistryVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Marine Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Department of Aquatic Science, Faculty of Natural ResourcesPrince of Songkla UniversitySongkhlaThailand

Personalised recommendations