Water, Air, and Soil Pollution

, Volume 206, Issue 1–4, pp 129–137 | Cite as

An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments

  • Eunyoung Choe
  • Freek van der Meer
  • David Rossiter
  • Caroline van der Salm
  • Kyoung-Woong Kim


This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to enhance adhesion between the ATR crystal and sample. The similar nitrate peak heights of soil pastes and their supernatants indicated that the nitrate in the liquid portion of the soil paste mainly responded to the FTIR signal. Using a 0.01-M CaSO4 solution for the soil paste, which has no interference bands in the characteristic spectra of the analyte, increased the concentration of the nitrates to be measured. Second-order derivatives were used in the prediction model to minimize the interference effects and enhance the performance. The second-order derivative spectra contained a unique nitrate peak in a range of 1,400–1,200 cm−1 without interference of carbonate. A partial least square regression model using second-order derivative spectra performed well (R 2 = 0.995, root mean square error (RMSE) = 23.5, ratio of prediction to deviation (RPD) = 13.8) on laboratory samples. Prediction results were also good for a test set of agricultural field soils with a CaCO3 concentration of 6% to 8% (R 2 = 0.97, RMSE = 18.6, RPD = 3.5). Application of the prediction model based on soil paste samples to nitrate stock solution resulted in an increased RMSE (62.3); however, validation measures were still satisfactory (R 2 = 0.99, RPD = 3.0).


Attenuated total reflectance Fourier transform infrared Nitrate determination Partial least square regression Second-order derivatives Soil paste 



This work was supported by the Korean Science and Engineering Foundation (KOSEF) through the National Research Lab. program funded by the Korean Ministry of Science and Technology (no. M10300000298-06J0000-29810).


  1. Al-Darby, A., & Abdel-Nasser, G. (2006). Nitrate leaching through unsaturated soil columns: Comparison between numerical and analytical solutions. Journal of Applied Sciences, 6(4), 735–743. doi: 10.3923/jas.2006.735.743.CrossRefGoogle Scholar
  2. Al-Hosney, H. A., Carlos-Cuellar, S., Baltrusaitis, J., & Grassian, V. H. (2005). Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: A Knudsen cell reactor, FTIR and SEM study. Physical Chemistry Chemical Physics, 7(6), 1266–1276. doi: 10.1039/b417872f.CrossRefGoogle Scholar
  3. Cahn, M. D., Bouldin, D. R., & Cravo, M. S. (1992). Nitrate sorption in the profile of an acid soil. Plant and Soil, 143, 179–183. doi: 10.1007/BF00007871.CrossRefGoogle Scholar
  4. Ehsani, M. R., Upadhyaya, S. K., Fawcett, W. R., Protsailo, L. V., & Slaughter, D. (2001). Feasibility of detecting soil nitrate content using a mid-infrared technique. American Society of Agricultural Engineers, 44(6), 1931–1940.Google Scholar
  5. Goodman, A. L., Bernard, E. T., & Grassian, V. H. (2001). Spectroscopic study of nitric acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in the presence of adsorbed water. The Journal of Physical Chemistry A, 105(26), 6443–6457. doi: 10.1021/jp003722l.CrossRefGoogle Scholar
  6. Griffin, G., Jokela, W., & Ross, D. (1995). Recommended soil nitrate-N tests. In J. T. Sims & A. M. Wolf (Eds.), Recommended soil testing procedures for the Northeastern United States (2nd ed., pp. 22–29). Newark, DE: Northeastern Regional Publication No. 493.Google Scholar
  7. Grube, M., Lin, J. G., Lee, P. H., & Kokorevicha, S. (2006). Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma, 130, 324–333. doi: 10.1016/j.geoderma.2005.02.005.CrossRefGoogle Scholar
  8. Jahn, B. R., Linker, R., Upadhyaya, S. K., Shaviv, A., Slaughter, D. C., & Shmulevich, I. (2006). Mid-infrared spectroscopic determination of soil nitrate content. Biosystems Engineering, 94(4), 505–515. doi: 10.1016/j.biosystemseng.2006.05.011.CrossRefGoogle Scholar
  9. Linker, R. (2004). Waveband selection for determination of nitrate in soil using mid-infrared attenuated total reflectance spectroscopy. Applied Spectroscopy, 58(11), 1277–1281. doi: 10.1366/0003702042475394.CrossRefGoogle Scholar
  10. Linker, R., Shmulevich, I., Kenny, A., & Shaviv, A. (2005). Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere, 61(5), 652–658. doi: 10.1016/j.chemosphere.2005.03.034.CrossRefGoogle Scholar
  11. Linker, R., Weiner, M., Shmulevich, I., & Shaviv, A. (2006). nitrate determination in soil pastes using attenuated total reflectance mid-infrared spectroscopy: Improved accuracy via soil identification. Biosystems Engineering, 94(1), 111–118. doi: 10.1016/j.biosystemseng.2006.01.014.CrossRefGoogle Scholar
  12. Roy, W. R., & Krapac, I. G. (2006). Potential soil cleanup objectives for nitrogen-containing fertilizers at agrichemical facilities. Soil & Sediment Contamination, 15, 241–251. doi: 10.1080/15320380600646274.CrossRefGoogle Scholar
  13. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. doi: 10.1021/ac60214a047.CrossRefGoogle Scholar
  14. Shaviv, A., Kenny, A., Shmulevitch, I., Singher, L., Raichlin, Y., & Katzir, A. (2003). Direct monitoring of soil and water nitrate by FTIR based FEWS or membrane systems. Environmental Science & Technology, 37(12), 2807–2812. doi: 10.1021/es020885+.CrossRefGoogle Scholar
  15. Verma, S. K., & Deb, M. K. (2007). Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Analytica Chimica Acta, 582(2), 382–389. doi: 10.1016/j.aca.2006.09.020.CrossRefGoogle Scholar
  16. Vinten, A. J. A., & Smith, K. A. (1993). Nitrogen cycling in agricultural soils. In T. P. Burt, A. L. Heathwaite & S. T. Trudgill (Eds.), Nitrate: Processes, Patterns and Management (pp. 39–73). Chichester: Wiley.Google Scholar
  17. Vivekanandan, K., Selvasekarapandian, S., & Kolandaivel, P. (1995). Raman and FT-IR studies of Pb4(NO3) 2(PO4) 2·2H2O crystal. Materials Chemistry and Physics, 39(4), 284–289. doi: 10.1016/0254-0584(94)01440-R.CrossRefGoogle Scholar
  18. Williams, P. C. (2001). Implementation of near infrared technology. In P. C. William & K. H. Norris (Eds.), Near-Infrared Technology in the Agriculture and Food Industries (pp. 145–171). St. Paul, Minnesota: Am. Assoc. of Cereal Chemists.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eunyoung Choe
    • 1
    • 2
  • Freek van der Meer
    • 3
    • 4
  • David Rossiter
    • 3
  • Caroline van der Salm
    • 5
  • Kyoung-Woong Kim
    • 1
  1. 1.Department of Environmental Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Soil & Fertilizer Management DivisionNational Academy of Agricultural Science, RDASuwonRepublic of Korea
  3. 3.Department of Earth Systems AnalysisInternational Institute for Geo-information Science and Earth Observation (ITC)EnschedeThe Netherlands
  4. 4.Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands
  5. 5.Alterra, Soil Science CenterWageningen University and Research CenterWageningenThe Netherlands

Personalised recommendations