Water, Air, and Soil Pollution

, Volume 206, Issue 1–4, pp 105–127 | Cite as

Dispersal of Contaminant Metals in the Mining-Affected Danube and Maritsa Drainage Basins, Bulgaria, Eastern Europe

  • Graham Bird
  • Paul A. Brewer
  • Mark G. Macklin
  • Mariyana Nikolova
  • Tsvetan Kotsev
  • Mihail Mollov
  • Catherine Swain


Metal dispersal in the Danube and Maritsa drainage basins resulting from metal mining activities in Bulgaria has been assessed through the collection of 611 samples of river water, river channel and floodplain sediment, and mine waste from over 218 sites. Concentrations of Cd, Cu, Pb, and Zn in river water were found to be highest in close proximity to locations of Cu and Pb–Zn mining regions in the Maritsa catchment. Downstream dispersal of solute metals in these catchments, and into the River Danube, was found to be limited by physical dilution and a well-buffered pH environment. Dispersal of contaminant metals in channel and floodplain sediment was found to be extensive. Contamination was particularly severe in the Rivers Timok and Iskar (Danube catchment) and the Topolnitsa, Chepelarska, and Arda Rivers (Maritsa catchment) and creates the potential of transboundary dispersal of contaminant metals.


Metal mining Contaminant dispersal River Danube Bulgaria 


  1. Abrahams, P. W., & Steigmajer, J. (2003). Soil ingestion by sheep grazing metal enriched floodplain soils of mid-Wales. Environmental Geochemistry and Health, 25, 17–24. doi:10.1023/A:1021217402950.CrossRefGoogle Scholar
  2. Allan, R. J. (1988). Mining activities as sources of metals and metalloids to the hydrosphere. In G. Strigel (Ed.), Metals and metalloids in the hydrosphere: impact through mining and industry, and prevention technology (pp. 45–67). Paris: UNESCO.Google Scholar
  3. Benvenuti, M., Mascaro, I., Corsini, F., Lattanzi, P., Parrini, P., & Tanelli, G. (1997). Mine waste dumps and heavy metal pollution in abandoned mining district of Bocchegiano (Southern Tuscany, Italy). Environmental Geology, 30, 238–243. doi:10.1007/s002540050152.CrossRefGoogle Scholar
  4. Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., et al. (2003a). The solid-state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. doi:10.1016/S0883-2927(03)00078-7.CrossRefGoogle Scholar
  5. Bird, G., Brewer, P.A., Macklin, M.G., Balteanu, D., Driga, B., Serban, M., et al. (2003b). The impact and significance of metal mining activities on the environmental quality of Romanian river systems. In CCMESI (Ed.), Proceedings of the First International Conference on Environmental Research and Assessment, Bucharest, Romania (pp. 316–332). University of Bucharest.Google Scholar
  6. Bird, G., Macklin, M. G., Brewer, P. A., Balteanu, D., Driga, B., Zaharia, S., et al. (2003c). Environmental impacts of metal mining activities in Romania. In N. Josan, D. Balteanu, P. A. Brewer & M. G. Macklin (Eds.), The environmental and socio-economic impact of industrial tailings ponds, Oradea, Romania (pp. 87–96). University of Oradea.Google Scholar
  7. Bird, G., Brewer, P. A., Macklin, M. G., Serban, M., Balteanu, D., & Driga, B. (2005). The magnitude, spatial extent and environmental significance of heavy metal contamination in the Aries river catchment, western Romania: implications for development of the Rosia Montana gold deposit. Journal of Geochemical Exploration, 86, 26–48. doi:10.1016/j.gexplo.2005.02.002.CrossRefGoogle Scholar
  8. Bird, G., Brewer, P. A., Macklin, M. G., Serban, M., Balteanu, D., Driga, B., et al. (2008). River system recovery following the Novaţ-Roşu tailings dam failure, Maramureş County, Romania. Applied Geochemistry, 23, 3498–3518. doi:10.1016/j.apgeochem.2008.08.010.CrossRefGoogle Scholar
  9. Bird, G., Macklin, M. G., Brewer, P. A., Zaharia, S., Balteanu, D., Driga, B., et al. (2009). Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania. Environmental Geochemistry and Health. doi:10.1007/s10653-009-9259-0.
  10. Bogdanov, B. (1982). Bulgaria. In F. W. Dunning, W. Mykura & D. Slater (Eds.), Mineral deposits of Europe. Volume 2: Southeast Europe (pp. 215–232). London: The Mineralogical Society.Google Scholar
  11. Brewer, P. A., & Taylor, M. P. (1997). The spatial distribution of heavy metal contaminated sediment across terraced floodplains. Catena, 30, 229–249. doi:10.1016/S0341-8162(97)00017-9.CrossRefGoogle Scholar
  12. Brewer, P. A., Macklin, M. G., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2002). Sediment and water quality in Maramures County, northwest Romania, following the January and March 2000 tailings dam failures. Proceedings of the Romanian Academy, Series B: Chemistry, Life Sciences and Geosciences, 4, 41–48.Google Scholar
  13. Brewer, P. A., Macklin, M. G., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2003). The tailings dam failures in Maramures County, Romania and their transboundary impacts on the river systems. In W. L. Filho & I. Butorina (Eds.), Approaches to handling environmental problems in the mining and metallurgical regions (pp. 73–83). Boston, MA: Kluwer.Google Scholar
  14. Ciszewski, D. (2001). Flood-related changes in heavy metal concentrations within sediments of the Biala Przemsza River. Geomorphology, 40, 205–218. doi:10.1016/S0169-555X(01)00044-7.CrossRefGoogle Scholar
  15. Davies, B. E., & Lewin, J. (1974). Chronosequences in alluvial soils with special reference to historic lead pollution in Cardiganshire, Wales. Environmental Pollution, 6, 49–57. doi:10.1016/0013-9327(74)90046-9.CrossRefGoogle Scholar
  16. Davis, A., Ruby, M. V., & Bergstrom, P. D. (1992). Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environmental Science & Technology, 26, 461–468. doi:10.1021/es00027a002.CrossRefGoogle Scholar
  17. Dawson, E. J., & Macklin, M. G. (1998). Speciation of heavy metals on suspended sediment under high flow conditions in the River Aire, West Yorkshire, UK. Hydrological Processes, 12, 1483–1494. doi:10.1002/(SICI)1099-1085(199807)12:9<1483::AID-HYP651>3.0.CO;2-W. CrossRefGoogle Scholar
  18. Dennis, I., Macklin, M. G., Coulthard, T. J., & Brewer, P. A. (2003). The impact of the October–November 2000 floods on contaminant metal dispersal in the River Swales catchment, North Yorkshire, UK. Hydrological Processes, 17, 1641–1657. doi:10.1002/hyp.1206.CrossRefGoogle Scholar
  19. Dennis, I. A., Coulthard, T. J., Brewer, P. A., & Macklin, M. G. (2009). The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surface Processes and Landforms, 34, 453–466. doi:10.1002/esp.1762.CrossRefGoogle Scholar
  20. Evans, D. (1991). Chemical and physical partitioning in contaminated stream sediments in the River Ystwyth, mid-Wales. Environmental Geochemistry and Health, 13, 84–92. doi:10.1007/BF01734299.CrossRefGoogle Scholar
  21. Fuge, R., Pearce, F. M., Pearce, N. J. G., & Perkins, W. T. (1993). Geochemistry of Cd in the secondary environment near abandoned metalliferous mines, Wales. Applied Geochemistry. Supplementary Issue, 2, 29–35.Google Scholar
  22. Gao, Y., & Bradshaw, A. D. (1995). The containment of toxic wastes: II. Metal movement in leachate and drainage at Parc lead–zinc mine, North Wales. Environmental Pollution, 90, 379–382. doi:10.1016/0269-7491(95)00011-F.CrossRefGoogle Scholar
  23. Graf, M., Lair, G. J., Zehetner, F., & Gerzabek, M. H. (2007). Geochemical fractions of copper in soil chronosequences of selected European floodplains. Environmental Pollution, 148, 788–796. doi:10.1016/j.envpol.2007.01.035.CrossRefGoogle Scholar
  24. Gruiz, K., Muranyi, A., Molnar, M., & Horvath, B. (1998). Risk assessment of heavy metal contamination in Danube sediments from Hungary. Water Science and Technology, 37, 273–281. doi:10.1016/S0273-1223(98)00208-X.CrossRefGoogle Scholar
  25. Hall, G. E. M. (1992). Inductively coupled plasma mass spectrometry in geoanalysis. Journal of Geochemical Exploration, 44, 201–249. doi:10.1016/0375-6742(92)90051-9.CrossRefGoogle Scholar
  26. Harding, J. P. C., & Witton, B. A. (1981). Accumulation of zinc, cadmium and lead by field populations of Lamanea. Water Research, 15, 301–319. doi:10.1016/0043-1354(81)90034-8.CrossRefGoogle Scholar
  27. Herbert, R. B. J. (1994). Metal transport in groundwater contaminated by acid mine drainage. Nordic Hydrology, 25, 193–212.Google Scholar
  28. Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. P. (1999). 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE Engalnd, UK. Hydrological Processes, 13, 1087–1102. doi:10.1002/(SICI)1099-1085(199905)13:7<1087::AID-HYP791>3.0.CO;2-T.CrossRefGoogle Scholar
  29. Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72, 229–250. doi:10.1016/S0375-6742(01)00164-9.CrossRefGoogle Scholar
  30. Hudson-Edwards, K. A., Macklin, M. G., Jamieson, H. E., Brewer, P. A., Coulthard, T. J., Howard, A. J., et al. (2003). The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rios Agrio-Guadiamar, Aznacollar, Spain. Applied Geochemistry, 18, 221–239. doi:10.1016/S0883-2927(02)00122-1.CrossRefGoogle Scholar
  31. ICPDR. (2001). Inventory of potential accidental risk spots in the Danube River Basin (p. 131). Vienna: International Commission for the Protection of the Danube River.Google Scholar
  32. ICPDR. (2002). Joint Danube survey, final report (p. 261). Vienna: International Commission for the Protection of the Danube River.Google Scholar
  33. Jopony, M., & Young, S. (1993). Assessment of lead availability in soils contaminated by mine spoil. Plant and Soil, 151, 273–278. doi:10.1007/BF00016293.CrossRefGoogle Scholar
  34. Jovic, D., Nikolic, V., Vukadinovic, I., & Grzetic, I. (2002). State of mineral resources, mining industry and their impact to the environment in the Federal Republic of Yugoslavia. In Proceedings of the Workshop on Geo- and mining hazards, Hannover (pp. 1–22). Bundesanstalt fur Geowissenschaften und Rohstoffe.Google Scholar
  35. Kanurkov, G. (1988). The Fe-ore deposits in Bulgaria. Sofia: Tehnika. (in Bulgarian).Google Scholar
  36. Kotnik, J., Horvat, M., Milačič, R., Ščančar, J., Fajon, V., & Križanovski, A. (2003). Heavy metals in the sediment of the Sava River, Slovenia. Geologija, 46, 263–272.Google Scholar
  37. Kotsev, T. (2001). Contemporary heavy metal and arsenic river pollution in the ‘Ogosta’ reservoir drainage basin after the end of the mining activities (in Bulgarian). In Natural Potential and Sustainable Development of the Mountain Regions, Proceedings of the Balkan Scientific-Applied Conference, Vratsa, Bulgaria (pp. 415–426).Google Scholar
  38. Kundzewicz, Z. W., Ulbrich, U., Brucher, T., Graczyk, D., Kruger, A., Leckebusch, G. C., et al. (2005). Summer floods in central Europe—climate change track? Natural Hazards, 36, 165–189. doi:10.1007/s11069-004-4547-6.CrossRefGoogle Scholar
  39. Leenaers, H. (1989). The transport of heavy metals during flood events in the polluted River Geul (The Netherlands). Hydrological Processes, 3, 325–338. doi:10.1002/hyp.3360030404.CrossRefGoogle Scholar
  40. Lewin, J., & Macklin, M. G. (1987). Metal mining and floodplain sedimentation in Britain. In V. Gardiner (Ed.), International Geomorphology 1986: proceedings of the First International Conference on Geomorphology (pp. 1009–1027). Chichester: Wiley.Google Scholar
  41. Lewin, J., Davies, B. E., & Wolfenden, P. J. (1977). Interactions between channel change and historic mining sediments. In K. J. Gregory (Ed.), River channel changes (pp. 353–367). Chichester: Wiley.Google Scholar
  42. Macklin, M. G. (1985). Flood-plain sedimentation in the upper Axe Valley, Mendip, England. Transactions (Institute of British Geographers), 10, 235–244. doi:10.2307/621826.CrossRefGoogle Scholar
  43. Macklin, M. G. (1996). Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In M. G. Anderson, D. E. Walling & P. D. Bates (Eds.), Floodplain processes (pp. 441–460). Chichester: Wiley.Google Scholar
  44. Macklin, M. G., & Klimek, K. (1992). Dispersal, storage and transformation of metal contaminated alluvium in the upper Vistula basin, southwest Poland. Applied Geography (Sevenoaks, England), 12, 7–30. doi:10.1016/0143-6228(92)90023-G.CrossRefGoogle Scholar
  45. Macklin, M. G., & Lewin, J. (1989). Sediment transfer and transformation of an alluvial valley floor: the River South Tyne, Northumbria, U.K. Earth Surface Processes and Landforms, 14, 233–246. doi:10.1002/esp.3290140305.CrossRefGoogle Scholar
  46. Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment: results from selected English and Welsh floodplains. Applied Geochemistry, 9, 689–700. doi:10.1016/0883-2927(94)90028-0.CrossRefGoogle Scholar
  47. Macklin, M. G., Brewer, P. A., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2003). The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Applied Geochemistry, 18, 241–257. doi:10.1016/S0883-2927(02)00123-3.CrossRefGoogle Scholar
  48. Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I., et al. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447. doi:10.1016/j.geomorph.2006.06.024.CrossRefGoogle Scholar
  49. Marjanovic, A. (1990). Qualitative and quantitative-analyses of heavy metals in the Danube at the profile situated at the village of Vinca, Yugoslavia. Water Science and Technology, 22, 59–62.Google Scholar
  50. Marron, D. C. (1992). Floodplain storage of mine tailings in the Belle Fourche River system: a sediment budget approach. Earth Surface Processes and Landforms, 17, 675–685. doi:10.1002/esp.3290170704.CrossRefGoogle Scholar
  51. Milenkovic, N., Damjanovic, M., & Ristic, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14, 781–787.Google Scholar
  52. Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58, 101–118. doi:10.1016/S0375-6742(96)00073-8.CrossRefGoogle Scholar
  53. Miller, J., Barr, R., Grow, D., Lechler, P., Richardson, D., Waltman, K., et al. (1999). Effects of the 1997 flood on the transport and storage of sediment and mercury within the Carson River valley, west–central Nevada. The Journal of Geology, 107, 313–327. doi:10.1086/314353.CrossRefGoogle Scholar
  54. Mutafchiev, I., & Petrunov, R. (1996). Geological genetic models of ore deposit formation in the Panagyurishte-Etropole ore region (pp. 69). Unpublished report for Navan-Chelopech Mining Company, Sofia.Google Scholar
  55. Obretenov, N. (2007). Berkovski ore district. In V. Milev, N. Obretenov, V. Georgiev, A. Arizanov, D. Zhelev & I. Bonev (Eds.), The gold deposits in Bulgaria (pp. 69–74). Sofia: Zeyma '93. (in Bulgarian).Google Scholar
  56. Odor, L., Wanty, R. B., Horvath, E., & Fugedi, U. (1998). Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary. Journal of Geochemical Exploration, 65, 47–60. doi:10.1016/S0375-6742(98)00056-9.CrossRefGoogle Scholar
  57. Oertel, N. (1994). Trend analysis of heavy metal concentration of the suspended matter in the River Danube. Water Science and Technology, 29, 141–143.Google Scholar
  58. Owens, P. N., Walling, D. E., & Leeks, G. J. L. (1999). Deposition and storage of fine grained sediments within the main channel system of the River Tweed, Scotland. Earth Surface Processes and Landforms, 24, 778–783. doi:10.1002/(SICI)1096-9837(199911)24:12<1061::AID-ESP35>3.0.CO;2-Y.CrossRefGoogle Scholar
  59. Rice, C. M., McCloyd, R. J., Boyce, A. J., & Marchev, P. (2007). Stable isotope study of the mineralization and alteration in the Madjarovo Pb–Zn district, south–east Bulgaria. Mineralium Deposita, 42, 691–713. doi:10.1007/s00126-007-0130-x.CrossRefGoogle Scholar
  60. Ricking, M., & Terytze, K. (1999). Trace metals and organic compounds in sediment samples from the River Danube in Russe and Lake Srebarna (Bulgaria). Environmental Geology, 37, 40–46. doi:10.1007/s002540050358.CrossRefGoogle Scholar
  61. Sakan, S., Grzetic, I., & Dordevic, D. (2007). Distribution and fractionation of heavy metals in the Tisa (Tisza) River sediments. Environmental Science and Pollution Research, 14, 229–236. doi:10.1065/espr2006.05.304.CrossRefGoogle Scholar
  62. Salomons, W. (1995). Environmental impact of metals derived from mining activities: processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.CrossRefGoogle Scholar
  63. Ščančar, J., Murko, S., Zuliani, T., Horvat, M., Kocman, D., Heath, E., et al. (2007). Report on the contamination of the Sava River sediments with metals and organic pollutants (p. 17). Ljunbljana: SARIB. Report on the contamination of the Sava River sediments with metals and organic pollutants.Google Scholar
  64. Skrbic, B., & Cupic, S. (2004). Trace metal distribution in surface soils of Novi Sad and bank sediment of the Danube River. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 1547–1558. doi:10.1081/ESE-120037853.Google Scholar
  65. Stoica, A., Capota, P., & Baiulescu, G. E. (2000). Determination of copper, cadmium, zinc and lead in Arges River in Romania during four seasons by inductively coupled plasma atomic emission spectrometry and anodic stripping voltammetry. Analytical Letters, 33, 3025–3035. doi:10.1080/00032710008543239.CrossRefGoogle Scholar
  66. Stos-Gale, Z. A., Gale, N. H., Annetts, N., Todorov, T., Lilov, P., Raduncheva, A., et al. (1998). Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 5, ores from Bulgaria. Archaeometry, 40, 217–226. doi:10.1111/j.1475-4754.1998.tb00834.x.CrossRefGoogle Scholar
  67. Strashimirov, S., Petrunov, R., & Kanazirski, M. (2002). Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Mineralium Deposita, 37, 587–598. doi:10.1007/s00126-002-0275-6.CrossRefGoogle Scholar
  68. US EPA (2002). A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems (pp. 232). US EPA-905-B02-001-C.Google Scholar
  69. Vassileva, R. D., Bonev, I. K., Marchev, P., & Atanassova, R. (2005). Pb–Zn deposits in the Madan ore field, South Bulgaria. Ore Geology Reviews, 27, 90–91. doi:10.1016/j.oregeorev.2005.07.026.CrossRefGoogle Scholar
  70. Vesselinov, I., Kolarova, V., Hadjiev, A., Hrischeva, E., & Kerestedjian, T. (1996). Mineralogical and geochemical characteristics of two tailings ponds of the Martinovo and Chiprovtsi ore-dressing plants (in Bulgarian). Geochemistry, Mineralogy and Petrology, 31, 89–102.Google Scholar
  71. Villarroel, L. F., Miller, J. R., Lechler, P. J., & Germanoski, D. (2006). Lead, zinc and antimony contamination of the Rio Chilco–Rio Tupiza drainage system, Southern Bolivia. Environmental Geology, 51, 283–299. doi:10.1007/s00254-006-0326-x.CrossRefGoogle Scholar
  72. von Quadt, A., Moritz, R., Peytcheva, I., & Heinrich, C. A. (2005). Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geology Reviews, 27, 95–126. doi:10.1016/j.oregeorev.2005.07.024.CrossRefGoogle Scholar
  73. Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments in the River Danube. Chemosphere, 51, 633–642. doi:10.1016/S0045-6535(03)00217-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Graham Bird
    • 1
  • Paul A. Brewer
    • 1
  • Mark G. Macklin
    • 1
  • Mariyana Nikolova
    • 2
  • Tsvetan Kotsev
    • 2
  • Mihail Mollov
    • 3
  • Catherine Swain
    • 1
  1. 1.Centre for Catchment and Coastal Research and River Basin Dynamics and Hydrology Research Group, Institute of Geography and Earth SciencesAberystwyth UniversityAberystwythUK
  2. 2.Institute of GeographyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Executive Environmental AgencyMinistry of Environment and WatersSofiaBulgaria

Personalised recommendations