Water, Air, and Soil Pollution

, Volume 205, Issue 1–4, pp 377–393 | Cite as

High Temporal Resolution Monitoring of Multiple Pollutant Responses in Drainage from an Intensively Managed Grassland Catchment Caused by a Summer Storm

  • S. J. Granger
  • J. M. B. Hawkins
  • R. Bol
  • S. M. White
  • P. Naden
  • G. Old
  • G. S. Bilotta
  • R. E. Brazier
  • C. J. A. Macleod
  • P. M. Haygarth
Article

Abstract

This work presents data on a suite of diffuse pollutants, monitored in a stream draining an intensively managed grassland on a 30 min time step during a period of intense rainfall to better understand their sources and pathways. Nitrite (92 μg l−1), particulate phosphorus (107 μg l−1) and soluble phosphorus (74 μg l−1) exceeded environmental limits during base flow. Concentrations of nitrate and nitrite were decreased during the storm event, whereas all other pollutants generally increased and exceeded environmental limits where specified, especially when associated with a small subsidiary hydrograph on the rising limb of the main hydrograph. Total pollutants loads, when using a 60 min sampling frequency, would have led to significant over and under-estimations depending on which 60 min sample set was used. In the worst case, loads of ammonium could have been under-estimated by 35% or over estimated by 25% with errors being associated with loads on the rising limb of the hydrograph and more specifically a small subsidiary hydrograph. This subsidiary hydrograph may have occurred as a result of runoff from the farm hard standings within the catchment. Incidental transfer of pollutants associate with this runoff have masked the overall grassland pollutant response. To better understand these different source areas and pollutant dynamics, there is a need for novel tracing techniques to elucidate their relative contribution and pathways.

Keywords

Diffuse pollution Incidental transfer Phosphorus Sediment Ammonium Nitrate Nitrite Dissolved carbon 

References

  1. Armstrong, A. C., & Garwood, E. A. (1991). Hydrological consequences of artificial drainage of grassland. Hydrological Processes, 5, 157–174. doi:10.1002/hyp.3360050204.CrossRefGoogle Scholar
  2. Armstrong, A. C., Leeds-Harrison, P. B., Harris, G. L., & Catt, J. A. (1999). Measurement of solute fluxes in macroporous soils: Techniques, problems and precision. Soil Use and Management, 15, 240–246.Google Scholar
  3. Bilotta, G. S., Brazier, R. E., & Haygarth, P. M. (2007). Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: Erosion. Hydrological Processes, 21, 135–139. doi:10.1002/hyp.6600.CrossRefGoogle Scholar
  4. Bilotta, G. S., Brazier, R. E., Haygarth, P. M., Macleod, C. J. A., Butler, P., Granger, S., et al. (2008). Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. Journal of Environmental Quality, 37, 906–914. doi:10.2134/jeq2007.0457.CrossRefGoogle Scholar
  5. Boorman, D. B., Hollis, J. M., & Lilly, A. (1995). Hydrology of soil types: A hydrologically based classification of the soils of the United Kingdom. Institute of Hydrology report no. 126. Wallingford, Oxfordshire: Institute of Hydrology.Google Scholar
  6. Brazier, R. E., Bilotta, G. S., & Haygarth, P. M. (2007). A perspective on the role of lowland, agricultural grasslands in contributing to erosion and water quality problems in the UK. Earth Surface Processes and Landforms, 32, 964–967. doi:10.1002/esp.1484.CrossRefGoogle Scholar
  7. Edwards, A. C., Kay, D., McDonald, A. T., Francis, C., Watkins, J., Wilkinson, J. R., et al. (2008). Farmyards, an overlooked source for highly contaminated runoff. Journal of Environmental Management, 87, 551–559. doi:10.1016/j.jenvman.2006.06.027.CrossRefGoogle Scholar
  8. Eisenreich, S. J., Bannerman, R. T., & Armstrong, D. E. (1975). A simplified phosphorus analysis technique. Environmental Research Letters, 9, 43–53.CrossRefGoogle Scholar
  9. European Economic Community. (1978). Council directive of 18 July 1978 on the quality of fresh waters needing protection or improvement in order to support fish life (78/659/EEC). Official Journal of the European Communities, 21, 1–10.Google Scholar
  10. European Economic Community. (1991). Council directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Official Journal of the European Communities, L375, 1–8.Google Scholar
  11. Gächter, R., Steingruber, S. M., Reinhardt, M., & Wehrli, B. (2004). Nutrient transfer from soil to surface waters: Differences between nitrate and phosphate. Aquatic Sciences, 66, 117–122. doi:10.1007/s00027-003-0661-x.CrossRefGoogle Scholar
  12. Granger, S. J., Bol, R., Bulter, P. J., Haygarth, P. M., Naden, P., Old, G., et al. (2007). Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: Tracing sediment and organic matter. Hydrological Processes, 21, 417–422. doi:10.1002/hyp.6597.CrossRefGoogle Scholar
  13. Haigh, R. A., & White, R. E. (1986). Nitrate leaching from a small, underdrained, grassland, clay catchment. Soil Use and Management, 2, 65–70. doi:10.1111/j.1475-2743.1986.tb00683.x.CrossRefGoogle Scholar
  14. Hallet, S. H., Thanigasalam, P., & Hollis, J. M. (1995). SEISMIC: A desktop information system for assessing the fate and behaviour of pesticides in the environment. Computers and Electronics in Agriculture, 13, 227–242. doi:10.1016/0168-1699(95)00017-X.CrossRefGoogle Scholar
  15. Harrod, T. R., & Hogan, D. V. (2008). The soils of North Wyke and Rowden. Unpublished report to North Wyke Research, revised edition of original report by T.R. Harrod, Soil Survey of England and Wales (1981).Google Scholar
  16. Hatch, D. J., Chadwick, D. R., Smith, K. A., & Chambers, B. J. (2004). Ammonium-N losses from agriculture. In D. Lewis & L. Gairns (Eds.), Agriculture and the environment: Water framework directive and agriculture. Proceedings of the SAC and SEPA Biennial Conference. Edinburgh, 24–25 March 2004 (pp. 165–173).Google Scholar
  17. Hawkins, J. M. B., & Scholefield, D. (1996). Molybdate-reactive phosphorus losses in surface and drainage waters from permanent grassland. Journal of Environmental Quality, 25, 727–732.Google Scholar
  18. Haygarth, P. M., & Jarvis, S. C. (1999). Transfer of phosphorus from agricultural soils. Advances in Agronomy, 66, 195–249. doi:10.1016/S0065-2113(08)60428-9.CrossRefGoogle Scholar
  19. Haygarth, P. M., Hepworth, L., & Jarvis, S. C. (1998). Forms of phosphorus transfer in hydrological pathways from soil under grazed land. European Journal of Soil Science, 49, 65–72. doi:10.1046/j.1365-2389.1998.00131.x.CrossRefGoogle Scholar
  20. Haygarth, P. M., Bilotta, G. S., Bol, R., Brazier, R. E., Butler, P. J., Freer, J., et al. (2006). Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: An overview of key issues. Hydrological Processes, 20, 4407–4413. doi:10.1002/hyp.6598.CrossRefGoogle Scholar
  21. Heathwaite, A. L., Burt, T. P., & Trudgill, S. T. (1990). The effect of land use on nitrogen, phosphorus and suspended sediment delivery to streams in a small catchment in southwest England. In J. B. Thornes (Ed.), Vegetation and erosion. New York: Wiley.Google Scholar
  22. Henricksen, A., & Selmer-Olsen, A. R. (1970). Automatic methods for determining nitrate and nitrite in water and soil extract. Analyst (London), 95, 514–518. doi:10.1039/an9709500514.CrossRefGoogle Scholar
  23. House, W. A., & Warwick, M. S. (1998). Hysteresis of the solute concentration/discharge relationship in rivers during storms. Water Research, 32, 2279–2290. doi:10.1016/S0043-1354(97)00473-9.CrossRefGoogle Scholar
  24. House, W. A., Jickells, T. D., Edwards, A. C., Praska, K. E., & Denison, F. H. (1998). Reactions of phosphorus with sediments in fresh and marine waters. Soil Use and Management, 14S, 139–146. doi:10.1111/j.1475-2743.1998.tb00632.x.CrossRefGoogle Scholar
  25. Jarvie, H. P., Haygarth, P. M., Neal, C., Butler, P., Smith, B., Naden, P. S., et al. (2008). Stream water chemistry and quality along an upland–lowland rural land-use continuum, south west England. Journal of Hydrology (Amsterdam), 350, 215–231. doi:10.1016/j.jhydrol.2007.10.040.CrossRefGoogle Scholar
  26. Johnes, P. J. (2007). Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. Journal of Hydrology (Amsterdam), 332, 241–258. doi:10.1016/j.jhydrol.2006.07.006.CrossRefGoogle Scholar
  27. Jordan, P., Arnscheidt, J., McGrogan, H., & McCormick, S. (2005). High-resolution phosphorus transfers at the catchment scale: The hidden importance of non-storm transfers. Hydrology and Earth System Sciences, 9, 685–691.Google Scholar
  28. Kirchner, J. W., Feng, X., Neal, C., & Robson, A. J. (2004). The fine structure of water-quality dynamics: The (high frequency) wave of the future. Hydrological Processes, 18, 1353–1359. doi:10.1002/hyp.5537.CrossRefGoogle Scholar
  29. Krueger, T., Quinton, J. N., Freer, J., Macleod, C. J. A., Bilotta, G. S., Brazier, R. E., et al. (2009). Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer. Journal of Environmental Quality, 38, 1137-1148. doi:10.2134/jeq2008.0179.Google Scholar
  30. Lewis, W. M., & Morris, D. P. (1986). Toxicity of nitrite to fish: A review. Transactions of the American Fisheries Society, 115, 183–195. doi:10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2.CrossRefGoogle Scholar
  31. Malcolm, R. L. (1993). Concentration and composition of dissolved organic carbon in soils, streams, and groundwaters. In A. J. Bech, K. C. Jones, M. H. B. Hayes & U. Mingelgrin (Eds.), Organic substances in soil and water: Natural constituents and their influences on contaminant behaviour (pp. 19–30). Cambridge: Royal Society of Chemistry.Google Scholar
  32. Maran, D., Osborn, T. J., & Gillet, N. P. (2008). United Kingdom daily precipitation intensity: Improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833–842. doi:10.1002/joc.1672.CrossRefGoogle Scholar
  33. McTiernan, K. B., Jarvis, S. C., Scholefield, D., & Hayes, M. H. B. (2001). Dissolved organic carbon losses from grazed grassland under different management regines. Water Research, 35, 2565–2569. doi:10.1016/S0043-1354(00)00528-5.CrossRefGoogle Scholar
  34. Neal, C., Jarvie, H. P., Love, A., Neal, M., Wickham, H., & Harman, S. (2008). Water quality along a river continuum subject to point and diffuse sources. Journal of Hydrology (Amsterdam), 350, 154–165. doi:10.1016/j.jhydrol.2007.10.034.CrossRefGoogle Scholar
  35. OECD. (1982). Eutrophication of waters: Monitoring, assessment and control. Paris: Organisation for Economic Co-operation and Development.Google Scholar
  36. Pinoke, H. B., Gburek, W. J., Sharpley, A. N., & Schnabel, R. R. (1996). Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resources Research, 32, 1795–1804. doi:10.1029/96WR00637.CrossRefGoogle Scholar
  37. Preedy, N., McTiernan, K., Matthews, R., Heathwaite, L., & Haygarth, P. (2001). Rapid incidental phosphorus transfers from grassland. Journal of Environmental Quality, 30, 2105–2112.Google Scholar
  38. Quinn, J. M., & Stroud, M. J. (2002). Water quality and sediment and nutrient export from New Zealand hill-land catchments of contrasting land use. New Zealand Journal of Marine and Freshwater Research, 36, 409–429.Google Scholar
  39. Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17–23. doi:10.1016/S0025-326X(02)00227-8.CrossRefGoogle Scholar
  40. Ryden, J. C., Ball, P. R., & Garwood, E. A. (1984). Nitrate leaching from grassland. Nature, 311, 50–53. doi:10.1038/311050a0.CrossRefGoogle Scholar
  41. Scholefield, D., Tyson, K. C., Garwood, E. A., Armstrong, A. C., Hawkins, J., & Stone, A. C. (1993). Nitrate leaching from grazed lysimeters: Effects of fertilizer input, field drainage, age of sward and patterns of weather. Journal of Soil Science, 44, 601–613. doi:10.1111/j.1365-2389.1993.tb02325.x.CrossRefGoogle Scholar
  42. Scholefield, D., Le Goff, T., Braven, J., Ebdon, L., Long, T., & Butler, M. (2005). Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Science of the Total Environment, 344, 201–210. doi:10.1016/j.scitotenv.2005.02.014.CrossRefGoogle Scholar
  43. Searle, P. L. (1984). The Berthelot or Indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst (London), 109, 549–568. doi:10.1039/an9840900549.CrossRefGoogle Scholar
  44. Sharpley, A. N., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In H. Tunney, O. T. Carton, P. C. Brookes & A. E. Johnson (Eds.), Phosphorus loss from soil to water (pp. 1–53). Oxon, UK: CAB International.Google Scholar
  45. Smith, R. V., Foy, R. H., Lennox, S. D., Jordan, C., Burns, L. C., Cooper, J. E., et al. (1995a). Occurrence of nitrite in the Lough Neagh river system. Journal of Environmental Quality, 24, 952–959.CrossRefGoogle Scholar
  46. Smith, R. V., Lennox, S. D., Jordan, C., Foy, R. H., & McHale, E. (1995b). Increase in soluble phosphorus transported in drainflow from a grassland catchment in response to soil phosphorus accumulation. Soil Use and Management, 11, 204–209. doi:10.1111/j.1475-2743.1995.tb00957.x.CrossRefGoogle Scholar
  47. U.K. Standing Committee of Analysts. (1980). Suspended, settleable and total dissolved solids in waters and effluents. London: HMSO.Google Scholar
  48. Watson, C. J., Jordan, C., Lennox, S. D., Smith, R. V., & Steen, R. W. J. (2000). Inorganic nitrogen in drainage water from grazed grassland in Northern Ireland. Journal of Environmental Quality, 29, 225–232.CrossRefGoogle Scholar
  49. Webb, B. W., & Walling, D. E. (1985). Nitrate behaviour in streamflow from a grassland catchment in Devon, UK. Water Research, 19, 1005–1016. doi:10.1016/0043-1354(85)90369-0.CrossRefGoogle Scholar
  50. Withers, P. J. A., Ulen, B., Stamm, C., & Bechmenn, M. (2003). Incidental phosphorus losses—are they significant and can they be predicted? Journal of Plant Nutrition and Soil Science, 166, 459–468. doi:10.1002/jpln.200321165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. J. Granger
    • 1
  • J. M. B. Hawkins
    • 1
  • R. Bol
    • 1
  • S. M. White
    • 2
  • P. Naden
    • 3
  • G. Old
    • 3
  • G. S. Bilotta
    • 4
  • R. E. Brazier
    • 4
  • C. J. A. Macleod
    • 1
  • P. M. Haygarth
    • 5
  1. 1.Biogeochemistry of Soils and Waters GroupNorth Wyke ResearchOkehamptonUK
  2. 2.Natural Resources DepartmentCranfield UniversityCranfieldUK
  3. 3.Centre for Ecology and HydrologyWallingfordUK
  4. 4.School of Geography, Archaeology and Earth ResourcesThe University of ExeterExeterUK
  5. 5.Centre for Sustainable Water ManagementUniversity of LancasterLancasterUK

Personalised recommendations