Water, Air, and Soil Pollution

, Volume 205, Issue 1–4, pp 251–257 | Cite as

Dissolution Factors of Ta, Th, and U Oxides Present in Pyrochlore

  • K. Dias da CunhaEmail author
  • M. Santos
  • F. Zouain
  • L. Carneiro
  • G. Pitassi
  • C. Lima
  • C. V. Barros Leite
  • K. C. P. Dália


Air pollution can be a problem in industrial processes, but monitoring and controling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U), and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U, and Ta dissolution factors in vitro were obtained using the Gamble solution (simulant lung fluid, SLF), particle induced X-ray emission, and alpha spectrometry as analytical techniques. Ta, Th, and U are present in the pyrochlore crystal lattice as oxide; however, they have shown different dissolution parameters. The rapid dissolution fraction (f r), rapid dissolution rate (λ r), slow dissolution rate (f s), and slow dissolution fraction (λ s) measured for tantalum oxide were equal to 0.1 and 0.45 and 0.00007 day−1, respectively. For uranium oxide, f r was equal to 0.05, λ r was equal to 1.1 day−1, and λ s was equal to 0.000068 day−1. For thorium oxide, f r was 0.025, λ r was 1.5 day−1, and λ s was 0.000065 day−1. These results show that chemical behavior of these three compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore.


Thorium Uranium Tantalum Solubility Pyrochlore 



The authors would like to thank Mineração Catalão de Goiás, FAPERJ, CNPq, and PRONEX for the financial support.


  1. Andrea Blanco, M. D., Floyd, R., & Gibb, M. S. (1974). Studies of tantalum dust in the lungs. Radiology, 112, 549–556.Google Scholar
  2. Ansoborlo, E., Guilmette, R. A., Hoover, M. D., Chazel, V., Houpert, P., & Hengé-Napoli, N. H. (1998). Application of in vitro dissolution test to different uranium compounds and comparison with in vivo data. Radiation Protection Dosimetry, 79(1–4), 33–37.Google Scholar
  3. Ansoborlo, E., Chazel, V., Hengé-Napoli, M. H., Pihet, P., Rannou, A., Bailey, M. R., et al. (2002). Determination of the physical and chemical properties, buiokinetics, and dose coeficients of uranium compounds handled during nuclear fuel fabrication in France. International Health Physics, 82, 279–289. doi: 10.1097/00004032-200203000-00001.CrossRefGoogle Scholar
  4. Beckova, V., & Malatova, I. (2007). Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters. Radiation Protection Dosimetry, 129(4), 469–472.CrossRefGoogle Scholar
  5. Bertelli, L., Melo, D. R., Lipsztein, J., & Cruz-Suarez, R. (2008). AIDE: Internal Dosimetry Software. Radiation Protection Dosimetry, 130(3), 358–367. doi: 10.1093/rpd/ncn059.CrossRefGoogle Scholar
  6. Chazel, V., Houpert, P., Paquet, F., & Ansoborlo, E. (2001). Effect of absorption parameters on calculation of the dose coefficient: example of classification industrial uranium compounds. Radiation Protection Dosimetry, 94, 261–268.Google Scholar
  7. Chen, X. A., Cheng, Y. E., & Rong, Z. (2005). Recent results from a study of thorium lung burdens and health effects among miners in China. Journal of Radiological Protection, 25, 451–460. doi: 10.1088/0952-4746/25/4/007.CrossRefGoogle Scholar
  8. Cusbert, P. J., Carter, P. J., & Woods, D. A. (1994). In vitro dissolution of uranium. Radiation Protection Dosimetry, 55, 39–47.Google Scholar
  9. Dália, K. C. P. (2006). Estudo Da Exposição Ocupacional a Tântalo e Radionuclídeos Naturais. D.Sc. These Federal University of Rio de Janeiro, Instituto de Biofísica, Rio de Janeiro, Brazil.Google Scholar
  10. Dias da Cunha, K. M. A., Lipsztein, J. L., Fang, C. P., & Barros Leite, C. V. (1998a). A cascade impactor for mineral particle analysis. Journal of Aerosol Science and Technology, 29, 126–132. doi: 10.1080/02786829808965557.CrossRefGoogle Scholar
  11. Dias da Cunha, K. M. A., Lipsztein, J. L., & Barros Leite, C. V. (1998b). Occupational exposure to thorium in two Brazilian niobium plants. Radiation Protection Dosimetry, 79(1–4), 63–66.Google Scholar
  12. Dias da Cunha, K., Lipsztein, J. L., Azeredo, A. M., Melo, D., Julião, L. M. Q. C., Lamego, F. F., et al. (2002). Study of workers exposure to thorium, uranium and niobium mineral dust. Water Air and Soil Pollution, 137, 45–61. doi: 10.1023/A:1015599406550.CrossRefGoogle Scholar
  13. Edmunds, L. H., Jr., Graf, P. D., Sagel, S. S., & Greenspan, R. H. (1970). Radiographic observation of clearance of tantalum and barium sulfate particles from airways. Investigative Radiology, 5, 131–141. doi: 10.1097/00004424-197005000-00001.CrossRefGoogle Scholar
  14. Eidson, A. F. (1994). The effect of solubility on inhaled uranium compound clearance: A review. Health Physics, 67(1), 1–4.CrossRefGoogle Scholar
  15. Eidson, A. F., & Mewhinney, J. A. (1981). In vitro dissolution of respirable aerosols of industrial uranium and plutonium mixed-oxide nuclear fuels. NUREG, CR-2171, LMF-79.Google Scholar
  16. Friedman, P. J., & Tisi, G. M. (1972). Alveolarization of tantalum powder in experimental bronchography and the clearance of inhaled particles from the lung. Radiology, 104, 523–535.Google Scholar
  17. Frondel, J., Fleischer, M., & Jones, R. (1967). Glossary of uranium and thorium bearing minerals (4th ed.). Washington, DC: United States Government Printing Office.Google Scholar
  18. Gamble, J. L. (1967). Chemical anatomy, physiology and pathology of extracellular fluid (8th ed.), pp. 4–11. Boston, MA: Harvard University Press.Google Scholar
  19. Gamsu, G., Weintraub, R. M., & Nadel, J. A. (1973). Clearance of tatalum from airways of different caliber in man evaluated by a röentgenographic method. The American Review of Respiratory Disease, 107, 214–224.Google Scholar
  20. Hinds, W. (1998). Aerosol Technology: properties, behavior and measurement of airborne particles (2nd ed.). New York, NY: Willey.Google Scholar
  21. ICRP (International Commission on Radiological Protection). (1959). ICRP publication number 2. Report of committee II on permissible dose for internal radiation. Oxford: Pergamon.Google Scholar
  22. ICRP (International Commission on Radiological Protection). (1994). ICRP publication number 66. Human respiratory tract model for radiological protection. Oxford: Pergamon.Google Scholar
  23. ICRP (International Commission on Radiological Protection). (1997). ICRP Publication number 78. Individual monitoring for internal exposure of workers. ICRP publication nr. 78. Ann ICRP 27(3–4). Oxford: Pergamon.Google Scholar
  24. ICRP (International Commission on Radiological Protection). (2002). ICRP publication number 32. Guide for practical application of the ICRP human respiratory tract model, supporting guide 3. Oxford: Pergamon.Google Scholar
  25. Johansson, S. A. E., & Campbell, J. L. (1995). Particle induced X ray emission spectrometry. Chichester: Wiley.Google Scholar
  26. Kanapilly, G. M., & Goh, C. H. T. (1973). Some factors affecting the in vitro rates of dissolution of respirable particles of relatively low solubility. Health Physics, 25, 225–237. doi: 10.1097/00004032-197309000-00002.CrossRefGoogle Scholar
  27. Kanapilly, G. M., Raabe, O. G., & Goh, C. H. T. (1973). Measurement of in vitro dissolution of aerosol particles for comparison to in vivo dissolution in the lower respiratory tract after inhalation. Health Physics, 24, 497–507. doi: 10.1097/00004032-197305000-00004.CrossRefGoogle Scholar
  28. Lauria, D. C., & Godoy, J. M. (1988). A sequential analytical method for the determination of U-238, Th-232, Th-230, Th-228, Ra-228 and Ra-226 in environmental samples. Science of the Total Environment, 70, 83–99. doi: 10.1016/0048-9697(88)90253-7.CrossRefGoogle Scholar
  29. Leggett, R. W., Eckerman, K. F., & Boice, J. D., Jr. (2005). A respiratory model for uranium aluminide based on occupational data. Radiology Protection Journal, 25, 405. doi: 10.1088/0952-4746/25/4/004.CrossRefGoogle Scholar
  30. Li, W. B., Wahl, W., Oeh, U., Hollriegl, V., & Roth, P. (2007). Biokinetic modelling of natural thorium in humans by ingestion. Radiation Protection Dosimetry, 125, 500–505.CrossRefGoogle Scholar
  31. Llamas, R., Ortiz, J., Perz, A. R., & Baum, G. L. (1969). Experimental bronchography by tantalum insufflations. Diseases of the Chest, 56, 75–77.Google Scholar
  32. Moss, O. R. (1979). Simulants of lung intersticial fluid. Health Physics, 36, 447–448.Google Scholar
  33. Nadel, J. A., Wolfe, W. G., & Graf, P. D. (1968). Powdered tantalum as a medium for bronchography in canine and human lungs. Investigative Radiology, 3, 229–238. doi: 10.1097/00004424-196807000-00001.CrossRefGoogle Scholar
  34. Oliveira, R. (2006). Proposta de um Novo Modelo Biocinético para o Nióbio—Rio de Janeiro Federal University-COOPE. D.Sc. these, Rio de Janeiro, RJ.Google Scholar
  35. Sill, C. W., Voelz, G. L., Olson, D. G., & Anderson, J. I. (1969). Two studies of acute internal exposure to man involving cerium and tantalum radioisotopes. Health Physics, 16, 325–332.CrossRefGoogle Scholar
  36. Stradling, N., Hodgson, A., Ansoborlo, E., Bérard, P., Etherington, G., Fell, T., et al. (2003). Anomalies between radiological and chemical limits for uranium after inhalation by workers and the public. Radiation Protection Dosimetry, 105(1–4), 175–178.Google Scholar
  37. Sutton, M., & Burastero, S. R. (2004). Uranium (VI) solubility and speciation in simulated elemental human biological fluids. Chemical Research in Toxicology, 17, 1468–1480. doi: 10.1021/tx049878k.CrossRefGoogle Scholar
  38. Wan, B., Fleming, J. T., Schultz, T. W., & Sayler, G. S. (2006). In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+ T-cells and gene expression. Environmental Health Perspectives, 114(1), 85–91.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • K. Dias da Cunha
    • 1
    • 2
    Email author
  • M. Santos
    • 1
  • F. Zouain
    • 1
    • 2
  • L. Carneiro
    • 1
  • G. Pitassi
    • 2
  • C. Lima
    • 2
  • C. V. Barros Leite
    • 2
  • K. C. P. Dália
    • 3
  1. 1.Instituto de Radioproteção e Dosimetria (IRD/CNEN)Rio de JaneiroBrazil
  2. 2.Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)Rio de JaneiroBrazil
  3. 3.Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations