Advertisement

Improvement of Arsenic Electro-Removal from Underground Water by Lowering the Interference of other Ions

  • A. M. García-Lara
  • C. Montero-Ocampo
Article

Abstract

Electrocoagulation (EC) has been evaluated as a treatment technology for arsenic (As) removal. Experiments were developed in an electrochemical reactor with three parallel iron plates. Current densities of 15, 30, and 45 A m−2 were used to treat model water and 45 A m−2 to treat underground water (GW). For both types of water, the EC process was able to decrease the residual arsenic concentration to less than 10 μg L−1. However, the treatment time for As removal from GW was higher. This phenomenon was attributed to the competition of dissolved species present in GW such as silica and calcium with arsenic for the adsorption sites on the ferric oxyhydroxides flocs generated during the EC process. A procedure is proposed to reduce such interference by the addition of a silica adsorption inhibitor compound into the GW achieving a reduction in the process time. The adsorption of arsenic species over adsorbent was found to follow Lagergren adsorption model.

Keywords

Arsenic Electrocoagulation Underground water Ions interference Kinetics 

Notes

Acknowledgments

The authors wish to acknowledge the financial support to carry out this project 38467U to CONACyT.

References

  1. Ayoob, S., & Gupta, A. K. (2008). Journal of Hazardous Materials, 152, 976–985. doi: 10.1016/j.jhazmat.2007.07.072.CrossRefGoogle Scholar
  2. Baldi, G., Generali, E., Leonelli, C., Manfredini, T., Pellacani, G. C., & Siligardi, C. (1995). Journal of Materials Science, 30, 3251–3255. doi: 10.1007/BF01209246.CrossRefGoogle Scholar
  3. Chen, G. (2004). Separation and Purification Technology, 38, 11–41. doi: 10.1016/j.seppur.2003.10.006.CrossRefGoogle Scholar
  4. Chiang, S. H., Chang, T. C., Ouyang, C. F., & Leu, J. M. (2006). Water Science and Technology, 55, 187–195. doi: 10.2166/wst.2007.054.CrossRefGoogle Scholar
  5. Daneshvar, N., Sorkhabi, H. A., & Kasiri, M. B. (2004). Journal of Hazardous Materials, B112, 55–62. doi: 10.1016/j.jhazmat.2004.03.021.CrossRefGoogle Scholar
  6. Del Razo, L. M., Arellano, M. A., & Cebrián, M. E. (1990). Environmental Pollution, 64, 143–153. doi: 10.1016/0269-7491(90)90111-O.CrossRefGoogle Scholar
  7. Emett, M. T., & Khoe, G. H. (2001). Water Research, 35, 649–656. doi: 10.1016/S0043-1354(00)00294-3.CrossRefGoogle Scholar
  8. Escobar, C., Soto-Salazar, C., & Toral, M. I. (2006). Journal of Environmental Management, 81, 384–391. doi: 10.1016/j.jenvman.2005.11.012.CrossRefGoogle Scholar
  9. Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., et al. (2007). Journal of Hazardous Materials, B139, 220–231. doi: 10.1016/j.jhazmat.2005.11.108.CrossRefGoogle Scholar
  10. Kumar, P. R., Chaudhari, S., Khilar, K. C., & Mahajan, S. P. (2004). Chemosphere, 55, 1245–1252. doi: 10.1016/j.chemosphere.2003.12.025.CrossRefGoogle Scholar
  11. Laure, O., & Vorobiev, E. (2003). International Journal of Mineral Processing, 71, 1–15. doi: 10.1016/S0301-7516(03)00026-7.CrossRefGoogle Scholar
  12. Magalhães, M. C. F. (2002). Pure and Applied Chemistry, 74, 1843–1850. doi: 10.1351/pac200274101843.CrossRefGoogle Scholar
  13. Meng, X., Bang, M., & Korfiatis, G. P. (2000). Water Research, 34, 1255–1261. doi: 10.1016/S0043-1354(99)00272-9.CrossRefGoogle Scholar
  14. Mok, W. M., & Wai, C. M. (1994). Mobilization of arsenic in contaminated river waters. In J. O. Nriagu (Ed.), Arsenic in the environment: Part I Cycling and characterization (99 pp). New York: Wiley.Google Scholar
  15. Nollet, L. M. L. (Ed.) (2007). Handbook of water analysis, 2nd edn., ch. 1. New York: CRC Press.Google Scholar
  16. Pinisakul, A., Polprasert, C., Parkpian, P., & Stayavivad, J. (2002). Water Science and Technology, 46, 247–254.Google Scholar
  17. Raposo, J. C., Sanz, J., Zuloaga, O., Olazabal, M. A., & Madariaga, J. M. (2002). The thermodynamic model of inorganic arsenic species in aqueous solutions potentiometric study of the hydrolytic equilibrium of arsenic acid. Talanta, 57, 849–857. doi: 10.1016/S0039-9140(02)00130-3.CrossRefGoogle Scholar
  18. Raposo, J. C., Zuloaga, O., Olazabal, M. A., & Madariaga, J. M. (2004). Study of precipitation equilibria of arsenate anion with calcium and magnesium in sodium perchlorate at 25ºC. Applied Geochemistry, 19, 855–862. doi: 10.1016/j.apgeochem.2003.10.012.CrossRefGoogle Scholar
  19. Sahachaiyunta, P., Koo, T., & Sheikholeslami, R. (2002). Desalination, 144, 373–378. doi: 10.1016/S0011-9164(02)00346-6.CrossRefGoogle Scholar
  20. Schenk, J. E., & Weber, W. J. (1968). Journal - American Water Works Association, 2, 199–212.Google Scholar
  21. Song, S., Lopez-Valdivieso, A., Hernandez-Campos, D. J., Peng, C., Monroy-Fernandez, M. G., & Razo-Soto, I. (2006). Water Research, 40, 364–372. doi: 10.1016/j.watres.2005.09.046.CrossRefGoogle Scholar
  22. Soon-An, O., Chye-Eng, S., & Poh-Eng, L. (2007). EJEAFChe, 6(2), 1764–1774.Google Scholar
  23. World Health Organization. (1993). Guidelines for drinking water quality: Remediations, vol. 1 (3rd ed.). Geneva: WHO.Google Scholar
  24. Yáñez, J., Fierro, V., Mansilla, H., Figueroa, L., Cornejo, L., & Barnes, R. M. (2005). Journal of Environmental Monitoring, 7, 1335–1341. doi: 10.1039/b506313b.CrossRefGoogle Scholar
  25. Yilmaz, A. E., Boncukcuoğlu, R., Kocakerim, M. M., & Keskinler, B. (2005). Journal of Hazardous Materials, B125, 160–165.CrossRefGoogle Scholar
  26. Yu, M. J., Koo, J. S., Myung, G. N., Cho, Y. K., & Cho, Y. M. (2005). Water Science and Technology, 51(10), 231–239.Google Scholar
  27. Zeng, L. (2003). Water Research, 37, 4351–4358. doi: 10.1016/S0043-1354(03)00402-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.CINVESTAV-IPNSaltilloMéxico

Personalised recommendations