Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of Acid Leachable Trace Metals in Soils Around a Five Centuries Old Mining District in Hidalgo, Central Mexico


We present the concentrations and distribution patterns of nine acid leachable trace metals (ALTMs) Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, and Cd in the soil samples from the five century old Pachuca-Mineral de Monte mining district of the Central Mexico. The ALTMs do not show any significant correlation with pH, EC, CaCO3, and organic carbon. The metal concentration indicates three distinct distribution patterns. Fe, Mn, Cr, Pb, and Zn show enrichment in the high altitude region of the northern and central part of the study area. Likewise, Cu and Cd are enriched in the northern mountainous terrains. Both these groups show strong positive correlation with Mn indicating that they are associated with Mn-bearing minerals. However, we relate the first group of metals to excessive vehicular transportation and second group to mining waste dumps. The third group of ALTMs Co and Ni indicates its direct relationship to ore processing activities. Comparison of ALTMs concentrations from this study and various other studies throughout the world suggests the need to take precautionary measures of surface soil in high altitude areas to avoid metal enrichments and its subsequent environmental problems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Adriano, D. C. (2001). Trace elements in terrestrial environment: biogeochemistry, bioavailability, and risks of metals. 2 nd Edn., Springer, p. 867. Heidelberg: Berlin.

  2. Agemian, H., & Chau, A. S. Y. (1976). Evaluation of extraction technique for the determination of metals in aquatic sediments. Analyst (London), 101, 761–767. doi:10.1039/an9760100761.

  3. Aitchison, J. (1986). The statistical analysis of compositional data. New York: Wiley.

  4. Bakirdere, S., & Yaman, M. (2008). Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environmental Monitoring and Assessment, 136, 401–410. doi:10.1007/s10661-007-9695-1.

  5. Balakrishnan, N., & Muller-Dombois, D. (1983). Nutrient studies in relation to habitat types and canopy die black in the Montane rain forest ecosystem, Island of Hawaii. Pacific Science, 37, 339–359.

  6. Bell, F. G., Bullock, S. E. T., Hälbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216. doi:10.1016/S0166-5162(00)00033-1.

  7. Boularbah, A., Schwartz, C., Bitton, G., & Mörel, J. L. (2006). Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810. doi:10.1016/j.chemosphere.2005.07.079.

  8. Chork, C. Y., & Govett, G. J. S. (1985). Comparison of interpretations of geochemical soil data by some multivariate statistical methods, Key Anacon, N.B., Canada. Journal of Geochemical Exploration, 23, 213–242. doi:10.1016/0375-6742(85)90027-5.

  9. Dreier, J. E. (2005). The environment of vein formation and ore deposition in the Purisima-Colon vein system, Pachuca real del Monte District, Hidalgo, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, 100(7), 1325–1347. doi:10.2113/100.7.1325.

  10. Dueñas-Garcia, J. C., Frías-González, M. A., Benitez-López, J., Macedo-Palencia, R., & Rodríguez-Salinas, J. J. (1992). Geological-Mining Monograph of the State of Hidalgo. Consejo de Recurso Minerales, Publishing No. M-3E, Pachuca, pp. 19–28.

  11. El-Khalil, H., El-Hamiani, O., Bitton, G., Ouazzani, N., & Boularbah, A. (2008). Heavy metal contamination from mining sites in Routh Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environmental Monitoring and Assessment, 136, 147–160. doi:10.1007/s10661-007-9671-9.

  12. Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of road side top soil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environmental Geology, 44, 150–157.

  13. Ferguson, J. E. (1990). The heavy elements: chemistry, environmental impacts and health effects. Oxford: Pergamon Press.

  14. Fuller, C. C., Davis, J. A., & Waychunas, G. A. (1993). Surface chemistry of ferrihydrate: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 57, 2271–2282. doi:10.1016/0016-7037(93)90568-H.

  15. Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44, 249–253.

  16. Govil, P. K., Reddy, G. L. N., & Krishna, A. K. (2001). Soil contamination due to heavy metals in Patacheru industrial development area. Environmental Geology, 41, 461–469. doi:10.1007/s002540100415.

  17. Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstrong-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metals in core sediments from Muthupet Mangroves, SE Coast of India. Environmental Pollution, 145, 245–257. doi:10.1016/j.envpol.2006.03.012.

  18. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC.

  19. Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209, 27–39. doi:10.1016/S0048-9697(97) 00302-1.

  20. Kelm, U., Helle, S., Matthies, R., & Morales, A. (2008). Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: the influence of smelter emissions and a tailings deposit. Environmental Geology, . doi:10.1007/s00254-008-1305-1.

  21. Kraemer, S. M., & Hering, J. G. (2004). Biogeochemical controls on the mobility and bioavailability of metals in soils and ground water. Aquatic Sciences, 66, 1–2. doi:10.1007/s00027-004-0004-6.

  22. Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai, western India. Environmental Geology, 47, 1054–1061. doi:10.1007/s00254-005-1238-x.

  23. Krishna, A. K., & Govil, P. K. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, southern India. Environmental Geology, 54, 1465–1472. doi:10.1007/s00254-007-0927-z.

  24. Lee, J. Y., Choi, J. C., & Lee, K. K. (2005). Variation in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environmental Geochemistry and Health, 27, 237–257. doi:10.1007/s10653-004-3480-7.

  25. Li, X., Chi-sun, P., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hongkong. Applied Geochemistry, 16, 1361–1368. doi:10.1016/S0883-2927(01)00045-2.

  26. Li, X., Siu-lan, L., Sze-chung, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124. doi:10.1016/j.envpol.2003.09.030.

  27. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–283. doi:10.1016/0012-8252(92)90001-A.

  28. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243. doi:10.1016/S0048-9697(02)00273-5.

  29. McKenzie, E. R., Wong, C. M., Green, P. G., Kayhanian, M., & Young, T. M. (2008). Size dependent elemental composition of road-associated particles. Science of the Total Environment, 398, 145–153. doi:10.1016/j.scitotenv.2008.02.052.

  30. Mian, M. H., & Yanful, E. K. (2003). Tailings erosion and resuspension in two mine tailings ponds due to wind waves. Advances in Environmental Research, 7, 745–765. doi:10.1016/S1093-0191(02)00027-8.

  31. Norra, S., Fjer, N., Li, F., Chu, X., Xie, X., & Stüben, D. (2008). The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qindao, China. Journal of Soils and Sediments, 8(1), 4–16. doi:10.1065/jss2007.08.250.

  32. Özkan, M. H., Gürkan, R., Özkan, A., & Akçay, M. (2005). Determination of manganese and lead in road side soil samples by FAAS with ultrasound assisted leaching. Journal of Analytical Chemistry, 60(5), 469–474. doi:10.1007/s10809-005-0121-y.

  33. Pagotto, C., Remy, N., Legret, M., & LeCloirec, P. (2001). Heavy metal pollution of road dust and road side soil near a major rural highway. Environmental Technology, 22, 307–319. doi:10.1080/09593332208618280.

  34. Passariello, B., Giuliano, V., Quaresima, S., Barbaro, M., Caroli, S., Forte, G., et al. (2002). Evaluation of environmental contamination at an abandoned mining site. Microchemical Journal, 73, 245–250. doi:10.1016/S0026-265X(02)00069-3.

  35. Proctor, J., & Baker, A. J. M. (1994). The importance of nickel for plant growth in ultramafic (serpentine) soils. In S. M. Ross (Ed.), Toxic metals in soil–plant system, pp. 417–432. New York: Wiley.

  36. Ranasinghe, P. N., Dissanayake, C. B., Samarasinghe, D. V. N., & Galappatti, R. (2007). The relationship between soil geochemistry and die back of Montane forests in Sri Lanka: a case study. Environmental Geology, 51, 1077–1088. doi:10.1007/s00254-006-0399-6.

  37. Razo, I., Carrizales, L., Castro, J., Diaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152, 129–152. doi:10.1023/B:WATE.0000015350.14520.c1.

  38. Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book series: No. 5, pp. 417–435. Madison, WI: SSSA and ASA.

  39. Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.

  40. Sharma, V. K., Rhudy, K. B., Cargill, J. C., Tacker, M. E., & Vazquez, F. G. (2000). Metals and grain size distributions in soil of the middle Rio Grande basin, Texas, USA. Environmental Geology, 39(6), 698–704. doi:10.1007/s002540050484.

  41. Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237. doi:10.1016/S0269-7491(02)00219-1.

  42. Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495. doi:10.1016/S0269-7491(99)00311-5.

  43. Taliadouri, F. V. (1995). A weak acid extraction method as a tool for the metal pollution assessment in surface sediments. Mikrochimica Acta, 119, 243–249. doi:10.1007/BF01244003.

  44. Thuy, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils—a case study of Danang-Hoian area (Vietnam). Environmental Geology, 39(6), 603–610. doi:10.1007/s002540050472.

  45. Turer, D. (2005). Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water, Air, and Soil Pollution, 166, 251–264. doi:10.1007/s11270-005-7378-5.

  46. Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314. doi:10.1023/A:1013290130089.

  47. Wang, X. T. (1991). Effect of soil acidity on distribution and chemical forms of heavy metals in soil. Acta Pedologica Sinica, 28, 103–107.

  48. Wang, X. S., Qin, Y., & Sang, S.-X. (2005). Accumulation and source of heavy metals in urban top soils: a case study from the city of Xuzhou China. Environmental Geology, 48, 101–107. doi:10.1007/s00254-005-1270-x.

  49. Yun, S.-T., Choi, B.-Y., & Lee, P.-K. (2000). Distribution of heavy metals (Cr, Cu, Zn, Pb, Cd, As) in road side sediments, Seoul Metropolitan city, Korea. Environmental Technology, 21, 989–1000. doi:10.1080/09593332108618045.

  50. Zelazny, L. W., & White, G. N. (1989). The phyrophillite-talc group. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environment, pp. 527–550. Madison: Soil Science Society of America.

  51. Zhang, C. S., & Selinus, O. (1998). Statistics and GIS in environmental geochemistry—some problems and solutions. Journal of Geochemical Exploration, 64(1–3), 339–354. doi:10.1016/S0375-6742(98)00048-X.

Download references


MPJ and PDR wishes to thank SNI-CONACyT, Mexico for the financial assistance.

Author information

Correspondence to M. P. Jonathan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jonathan, M.P., Jayaprakash, M., Srinivasalu, S. et al. Evaluation of Acid Leachable Trace Metals in Soils Around a Five Centuries Old Mining District in Hidalgo, Central Mexico. Water Air Soil Pollut 205, 227 (2010).

Download citation


  • Acid leachable trace metal
  • Soil
  • Mine
  • Contamination
  • Pachuca
  • Mexico