Advertisement

Nutrient Bioaccumulation in Phragmites australis: Management Tool for Reduction of Pollution in the Mar Menor

  • M. Ruiz
  • J. VelascoEmail author
Article

Abstract

We studied nutrient removal by Phragmites australis in the Albujón rambla, the main drainage system that discharges into the Mar Menor, a Mediterranean coastal lagoon of high conservation interest, but highly threatened by point and nonpoint pollution derived from tourism and agricultural activities. We measured aerial biomass and N and P concentrations in both aboveground and belowground tissues of common reed during an annual cycle that included two cutting events and two periods of reed growth (one at the end of summer after cutting and another at the beginning of spring, following their natural cycle). The temporal variation of N and P concentrations was related to the phenology of the plant and cutting events. The maximum nutrient concentrations were recorded in young stems in the initial stages of the autumn growing season (35.86 mg N g−1 and 2.38 mg P g−1). The phosphorus dynamics showed evidence of translocation processes related with growth activity, although no evidence of N translocation was found. In November and in summer, when aerial growth ceases because of the hard conditions, the P concentration in rhizomes was higher than in stems, while in spring and in September, the period of maximal growth, the reverse relation was found. The highest total amounts of the two elements in the aboveground biomass (0.54 Tm N ha−1 and 0.25 Tm P ha−1) were reached in July, coinciding with the highest biomass (3.72 kg DW m−2), which then decreased to approximately half in August. Nutrient content in the aboveground tissues was highly dependent on the ammonium and nitrate water concentrations. In addition, the N content was inversely related to the Corg/N of sediments, while the P content was influenced positively by the phosphorous concentration of the water. Common reed of the Albujón rambla corresponds to the assimilation type, adapted to nutrient-rich habitats, which is characterized by a pronounced external N cycle and P internal reserves. Based on the results obtained, we propose a management plan for common reed to help control eutrophication of the Mar Menor lagoon. This would bring forward reed cutting to the beginning of summer, instead of August, coinciding with the time of maximum aerial biomass, greater nutrient retention, and lower risk of strong precipitation.

Keywords

Phragmites australis Nutrients Bioaccumulation Mar Menor Water pollution 

Notes

Acknowledgments

This work was partially funded by the Consejería de Agricultura, Agua y Medio Ambiente of the Murcia Region, Programa Séneca, 2001 (Project AGR/24/FS/02). We thank R. Alcántara, J. Lloret, C. Gutierrez, and D. Bruno for assistance in the field work, J. Lloret for design Fig. 1, and O. Belmar for assistance in processing samples in the laboratory, also A. Millán for his helpful comments on the manuscript.

References

  1. Álvarez-Rogel, J., Jiménez-Cárceles, F. J., & Egea, C. (2006). Phosphorus and Nitrogen Content in the Water of a Coastal Wetland in the Mar Menor Lagoon (SE Spain): Relationships with Effluents from Urban and Agricultural Areas. Water, Air, and Soil Pollution, 173, 21–38. doi: 10.1007/s11270-005-9020-y.CrossRefGoogle Scholar
  2. American Public Health Association (APHA). (1992). Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association.Google Scholar
  3. Andersen, J. M. (1982). Effect of Nitrate Concentration in Lake Water on Phospate Release from Sediment. Water Research, 16, 1119–1126. doi: 10.1016/0043-1354(82)90128-2.CrossRefGoogle Scholar
  4. Asaeda, T., & Karunaratne, S. (2000). Dynamic Modeling of the Growth of Phragmites australis: Model Description. Aquatic Botany, 67, 301–318. doi: 10.1016/S0304-3770(00)00095-4.CrossRefGoogle Scholar
  5. Asaeda, T., Nam, L., Hietz, P., Tanaka, N., & Karunaratne, S. (2002). Seasonal Fluctuations in Live and Dead Biomasa of Phragmites australis as Described by a Growth and Decomposition Model: Implications of Duration of Aerobic Conditions for Litter Mineralization and Sedimentation. Aquatic Botany, 73, 223–239. doi: 10.1016/S0304-3770(02)00027-X.CrossRefGoogle Scholar
  6. Baldatoni, D., Altoni, A., Di Tomamasi, P., Giovanni, B., & Virzo De Santo, A. (2003). Assessment of Macro and Microelement Accumulation Capability of two Aquatic Plants. Environmental Pollution, 130, 149–156. doi: 10.1016/j.envpol.2003.12.015.CrossRefGoogle Scholar
  7. Biddlestone, A. K., Gray, K. R., & Thurairajan, K. (1991). A Botanical Approach to the Treatment of Wastewaters. Journal of Biotechnology, 17, 209–220. doi: 10.1016/0168-1656(91)90012-K.CrossRefGoogle Scholar
  8. Board, R. R. (1996). Temporal Variations in the Nitrogen Content of Phragmites australis (Cav.) Trin ex. Steud. From a Shallow Fertile lake. Aquatic Botany, 55, 171–181. doi: 10.1016/S0304-3770(96)01070-4.CrossRefGoogle Scholar
  9. Borin, M., Bonaniti, G., Santamaria, G., & Giardini, L. (2001). A Constructed Surface Flow Wetland for Treating Agricultural Waste Waters. Water Science and Technology, 44, 523–530.Google Scholar
  10. Brix, H., & Schierup, H. H. (1989). The Use of Macrophytes in Water-Pollution Control. Ambio, 18, 100–107.Google Scholar
  11. Brix, H. (1994). Functions of Macrophytes in Constructed Wetlands. Water Science and Technology, 29, 71–78.Google Scholar
  12. Carignan, R., & Kalff, J. (1980). Phosphorus Sources for Aquatic Weeds: Water or Sediments. Science, 207, 987–989. doi: 10.1126/science.207.4434.987.CrossRefGoogle Scholar
  13. Cirujano, S., Moreno, M., Rubio, A. & Echeverrías, J. (2005). Capacidad depuradora del carrizo en el Parque Natural El Hondo (Alicante). Biodiversidad y Gestión de los carrizales. In Actas de las I Jornadas Científicas Parque Natural de El Hondo, Biodiversidad y Gestión de los carrizales, Crevillente.Google Scholar
  14. Conesa, C. (1990). El Campo de Cartagena—Clima e hidrología de un medio semiárido. Ayuntamiento de Cartagena y Comunidad de regantes del Campo de Cartagena, Murcia: Universidad de Murcia.Google Scholar
  15. Fernández-Alaez, M., Fernández-Alaez, C., & Becares, E. (1999). Nutrient Content in Macrophytes in Spanish Shallow Lakes. Hydrobiologia, 408/409, 317–326. doi: 10.1023/A:1017030429717.CrossRefGoogle Scholar
  16. Garbey, C., Murphy, K. J., Thiébaut, G., & Muller, S. (2004). Variation in P-content in Aquatic Plant Tissues Offers an Efficient Tool for Determining Plant Growth Strategies Along a Resource Gradient. Freshwater Biology, 49, 346–356. doi: 10.1111/j.1365-2427.2004.01188.x.CrossRefGoogle Scholar
  17. Gómez Cerezo, R., Suárez, M. L., & Vidal-Abarca, M. R. (2000). The Performance of Multi-stage System of Constructed Wetlands for Urban Wastewater treatment in a Semiarid Region of SE Spain. Ecological Engineering, 16, 501–517. doi: 10.1016/S0925-8574(00)00114-2.CrossRefGoogle Scholar
  18. Golterman, H. L. (2004). The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Dordrecht, The Netherlands: Kluber Academic Plubishers.Google Scholar
  19. Granéli, W., Sytsma, M., & Weisner, S. (1992). Rhizome Dynamics and Resource Storage in Phragmites australis. Wetlands Ecology and Management, 1, 239–247. doi: 10.1007/BF00244929.CrossRefGoogle Scholar
  20. Greenway, M., & Woolley, A. (1999). Constructed Wetlands in Queensland: Performance Efficiency and Nutrient Bioaccumulation. Ecological Engineering, 12, 39–55. doi: 10.1016/S0925-8574(98)00053-6.CrossRefGoogle Scholar
  21. Gucker, C.L. (2008). Phragmites australis. In: Fire Effects Information System (Online). US. Department of Agriculture, Forest Services, Rocky Mountain Research Station, Frie Scienc Laboratory. http://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.hyml (accessed 21 May, 2008).
  22. Hocking, P. J. (1989). Seasonal Dynamics of Production, Nutrient Accumulation, and Cycling by Phragmites australis in Nutrient-enriched Swamps in Inland Australia I: Whole Plants. Australian Journal of Marine and Freshwater Research, 40, 421–444. doi: 10.1071/MF9890421.CrossRefGoogle Scholar
  23. Kaushal, S. S., Groffman, P. M., Mayer, P. M., Striz, E., & Gold, A. J. (2008). Effects of Stream Restoration on Denitrification in an Urbanizing Watershed. Ecological Applications, 18, 789–804. doi: 10.1890/07-1159.1.CrossRefGoogle Scholar
  24. Kiedrzynska, E., Wagner, I., & Zalewski, M. (2008). Quantification of Phosphorus Retention Efficiency by Floodplain Vegetation and a Management Strategy for a Eutrophic Reservoir Restoration. Ecological Engineering, 33, 15–25. doi: 10.1016/j.ecoleng.2007.10.010.CrossRefGoogle Scholar
  25. Kohl, J. G., Woitke, P., Kühl, H., Dewender, M., & König, G. (1998). Seasonal Changes in Dissolved Amino Acids and Sugars in Basal Culm Internodes as Physiological Indicators of the C/N-Balance of Phragmites australis at Littoral Sites of Different Trophic Status. Aquatic Botany, 60, 221–240. doi: 10.1016/S0304-3770(97)00096-X.CrossRefGoogle Scholar
  26. Kuehl, H., & Khol, J. G. (1993). Seasonal Nitrogen Dynamics in Reed Beds Stands (Phragmites australis (Cav.) Trin. ex. Steudel) in Relation to Productivity. Hidrobiología, 251, 1–12. doi: 10.1007/BF00007158.CrossRefGoogle Scholar
  27. Kuehl, H., Woitke, P., & Kohl, J. G. (1997). Stategies of Nitrogen Cycling of Phragmites australis at Two Sites Differing in Nutrient Availability. Revue der Gesamten Hydrobiologie, 82, 57–66. doi: 10.1002/iroh.19970820108.CrossRefGoogle Scholar
  28. Larsen, V. J. (2003). The Effects of Pre-drying and Fragmentation on the Leaching on Nutrient Elements and Organic Matter from Phragmites australis (Cav.) Trin. Aquatic Botany, 14, 29–39. doi: 10.1016/0304-3770(82)90084-5.CrossRefGoogle Scholar
  29. Lelong, B., Lavoie, C., Jodoin, Y., & Belzile, F. (2007). Expansion Pathways of the Exotic Common reed (Phragmites australis) : A Historical and Genetic Analysis. Diversity & Distributions, 13, 430–437. doi: 10.1111/j.1472-4642.2007.00351.x.CrossRefGoogle Scholar
  30. Lippert, I., Rolletschek, H., Kühl, H., & Khol, J. G. (1999). Internal and External Nutrient Cycles in Stands of Phragmites australis- A Model for Two Ecotypes. Hydrobiologia, 408/409, 343–348. doi: 10.1023/A:1017008629659.CrossRefGoogle Scholar
  31. Lloret, J., Marin, A., Marin-Guirao, L., & Velasco, J. (2005). Changes in Macrophytes Distribution in a Hypersaline Coastal Lagoon Associated with the Development of Intensively Irrigated Agriculture. Ocean and Coastal Management, 48, 828–842. doi: 10.1016/j.ocecoaman.2005.07.002.CrossRefGoogle Scholar
  32. Meuleman, A., Beekman, J., & Verhoeven, J. (2002). Nutrient Retention and Nutrient-use Efficiency in Phragmites australis Stands After Wasterwater Application. Wetlands, 22, 712–721. doi: 10.1672/0277-5212(2002)022[0712:NRANUE]2.0.CO;2.CrossRefGoogle Scholar
  33. Minchinton, T. E., & Bertness, M. D. (2003). Disturbance-mediated Competition and the Spread of Phragmites australis in a Coastal Marsh. Ecological Applications, 13, 1400–1416. doi: 10.1890/02-5136.CrossRefGoogle Scholar
  34. Newman, S., & Pietro, K. (2001). Phosphorus Storage and Release in Response to Flooding: Implications for Everglades Stormwater Treatment Areas. Ecological Engineering, 18, 23–28. doi: 10.1016/S0925-8574(01)00063-5.CrossRefGoogle Scholar
  35. Nikolaidis, N. P., Koussouris, T., Murria, T. E., Bertahas, I., Diapoulus, A., & Konstantinos, G. (1996). Seasonal Variation of Nutrients and Heavy Metals in Phragmites australis of Lake Triclonis, Greece. Lake Reserve Management, 12, 364–370.CrossRefGoogle Scholar
  36. Pérez-Ruzafa, A., Gilabert, J., Gutiérrez, J. M., Fernández, A. I., Marcos, C., & Sabah, S. (2002). Evidence of a Planktonic Foof Web Response to Changes in Nutrient Input Dynamics in the Mar Menor Coastal Lagoon, Spain. Hydrobiologia, 475/476, 350–369. doi: 10.1023/A:1020343510060.CrossRefGoogle Scholar
  37. Poulin, B., Lefebvre, G., & Mauchamp, A. (2002). Habitat Requirements of Passerines and Reedbed Management in Southern France. Biological Conservation, 107, 315–325. doi: 10.1016/S0006-3207(02)00070-8.CrossRefGoogle Scholar
  38. Rickey, M. A., & Anderson, R. C. (2004). Effects of Nitrogen Addition on the Invasive Grass Phragmites australis and a Native Competitor Spartina pectinata. Journal of Applied Ecology, 41, 888–896. doi: 10.1111/j.0021-8901.2004.00948.x.CrossRefGoogle Scholar
  39. Romero, J. A., Brix, H., & Comín, F. A. (1999). Interative Effects of N and P on Growth, Nutrient Allocation and NH4- Uptake Kinetics by Phragmites australis. Aquatic Botany, 64, 369–380. doi: 10.1016/S0304-3770(99)00064-9.CrossRefGoogle Scholar
  40. Terrados, J., & Ros, J. D. (1991). Production dynamics in a macrophyte-dominated ecosystem: the Mar Menor coastal lagoon (SE Sapin). In J. D. Ros & N. Prat (Eds.), Homenage to Ramon Margalef—Why there is such Pleasure in Studing Nature, (pp. 255–270), p. 10. Oecologia Aquatica: Barcelona.Google Scholar
  41. Thursby, G., Chintala, M., Stetson, D., Wigand, C., & Champlin, D. (2002). A Rapid, Non Destructive Method for Estimating Aboveground Biomass of Salt Marsh Grasses. Wetlands, 22, 626–630. doi: 10.1672/0277-5212(2002)022[0626:ARNDMF]2.0.CO;2.CrossRefGoogle Scholar
  42. Tylová, E., Steinbachová, L., Votrubová, O., Lorenzen, B., & Brix, H. (2008). Different Sensitivity of Phragmites australis and Glyceria maxima to High Availability of Ammonium-N. Aquatic Botany, 88, 93–98. doi: 10.1016/j.aquabot.2007.08.008.CrossRefGoogle Scholar
  43. Ulrich, K. E., & Burton, T. M. (1985). The Effects of Nitrate, Phosphate, and Potassium Fertilization on Growth and Nutrient Uptake Patterns of Phragmites australis. Aquatic Botany, 21, 53–62. doi: 10.1016/0304-3770(85)90095-6.CrossRefGoogle Scholar
  44. Wathugala, A. G., Suzuki, T., & Kurihara, Y. (1987). Removal of Nitrogen, Phosphorus and COD from Waste Water Using Sand Filtration System with Phragmites australis. Water Research, 21, 1217–1224. doi: 10.1016/0043-1354(87)90173-4.CrossRefGoogle Scholar
  45. Velasco, J., Lloret, J., Millán, A., Marín, A., Barahona, J., Abellan, P., et al. (2006). Nutrient and Particulate Inputs into the Mar Menor Lagoon from an Intensive Agricultural Watershed. Water, Air, and Soil Pollution, 176, 37–56. doi: 10.1007/s11270-006-2859-8.CrossRefGoogle Scholar
  46. Vitousek, P. M. (1982). Nutrient Cycling and Nutrient Use Efficiency. American Naturalist, 119, 553–572. doi: 10.1086/283931.CrossRefGoogle Scholar
  47. Vollenweider, R. A. (1968). Scientific fundamentals of the eutrofication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrofication. Paris: Organisation for Economic Cooperation and Development, DAS/CSI/68.27.Google Scholar
  48. Vyamazal, J. (2002). The use of Sub-surface Constructed Wetlands for Wastewater Treatment in the Czech Republic: 10 years Experience. Ecological Engineering, 18, 663–646. doi: 10.1016/S0925-8574(02)00055-1.CrossRefGoogle Scholar
  49. White, J. S., Bayley, S. E., & Curtis, P. J. (2000). Sediment Storage of Phosphorus in a Northern Prairie Wetland Receiving Municipal and Agro-industrial Wastewater. Ecological Engineering, 14, 127–138. doi: 10.1016/S0925-8574(99)00024-5.CrossRefGoogle Scholar
  50. Wolfgang, P., Grosser, S., & Melzer, A. (1999). Nitrogen and Carbohydrate Storage in Rhizomes of Phragmites australis (Cav.) Trin. ex Steud., at Different Aquatic Sites of Lakes in Upper Bavaria. Limnologica, 29, 36–46. doi: 10.1016/S0075-9511(99)80037-1.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Ecology and Hydrology, Faculty of BiologyUniversity of MurciaMurciaSpain

Personalised recommendations