Advertisement

Water, Air, and Soil Pollution

, Volume 205, Issue 1–4, pp 3–24 | Cite as

Control of Algal Scum Using Top-Down Biomanipulation Approaches and Ecosystem Health Assessments for Efficient Reservoir Management

  • Kwang-Guk An
  • Jae-Yon Lee
  • Hema K. Kumar
  • Sang-Jae Lee
  • Soon-Jin Hwang
  • Baik-Ho Kim
  • Young-Seuk Park
  • Kyung-Hoon Shin
  • Sangkyu Park
  • Han-Yong Um
Article

Abstract

The objectives of this study were algal control and health assessments in a temperate eutrophic reservoir. Laboratory and mesocosm-scale in situ top-down biomanipulation experiments using planktivorous fishes and filter-feeding macroinvertebrates were conducted along with identification of the limiting nutrient using nutrient enrichment bioassays (NEBs), and ecosystem health evaluation based on the modified index of biological integrity model (Reservoir Ecosystem Health Assessment; REHA). Nutrients and N/P ratio analyses during 5 years revealed that the reservoir was in a eutrophic–hypertrophic state and that the key limiting nutrients, based on the NEBs, varied among seasons. Reservoir trophic guilds indicated declines in sensitive and endemic fish species and dominance of tolerant omnivores. Model values from multimetric REHAs averaged 25.8, indicating that the ecological health was in “fair to poor” condition. Overall microcosm biomanipulation tests suggested that macroinvertebrates, specifically Palaemon paucidens and Caridina denticulata, were effective candidates for phytoplankton control, compared to fishes. In situ mesocosm experiments revealed the highest removal rates with bluegreen algae and a phytoplankton size fraction of 2–19 μm (R e > 90%, Mann–Whitney U = 64.5–74.0, p < 0.01), the dominant fractions in the reservoir. Our biomanipulation technique may provide a key tool for efficient management and restoration of eutrophied reservoirs.

Keywords

Water quality Biomanipulation Removal rate Macroinvertebrate Phytoplankton 

Notes

Acknowledgment

This research was funded by the project (no. 306009-03-2-CG000) of the Agricultural Technology Development Center, Ministry of Agriculture and Forestry, Korea (Project Title: Development of Water Quality Management Techniques in Agricultural Reservoirs Using Fish Trophic Structure Analysis and Top-down Biomanipulations).

References

  1. Albright, M. F., Harman, W. N., Tibbits, W. T., Gray, M. S., Warner, D. M., & Hamway, R. J. (2004). Biomanipulation: A classic example in a shallow eutrophic pond. Lake and Reservoir Management, 20(3), 181–187.CrossRefGoogle Scholar
  2. An, K.-G. (2001). Hydrological significance on interannual variability of cations, anions, and conductivity in a large reservoir ecosystem. Korean Journal of Limnology, 34, 1–8.Google Scholar
  3. An, K.-G. (2002a). An influence of point source and flow events on inorganic nitrogen fractions in a large artificial reservoir. Korean Journal of Limnology, 34, 350–357.Google Scholar
  4. An, K.-G. (2002b). The impact of monsoon on seasonal variability of basin morphology and hydrology. Korean Journal of Limnology, 33, 342–349.Google Scholar
  5. An, K.-G., & Han, J.-H. (2007). A development of multi-metric approach for ecological health assessments in lentic ecosystems. Korean Journal of Limnology, 40(1), 72–81.Google Scholar
  6. An, K.-G., Jung, S.-H., & Choi, S.-S. (2001). An evaluation on health conditions of Pyong-Chang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean Journal of Limnology, 34, 153–165.Google Scholar
  7. An, K.-G., Ahn, K.-H., Urchin, C. G., & Park, S. S. (2003). Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology. Journal of Environmental Biology, 24(1), 29–38.Google Scholar
  8. Annadotter, H., Cronberg, G., Aagren, R., Lundstedt, B., Nilsson, P. A., & Ströbäck, S. (1999). Multiple techniques for lake restoration. Hydrobiologia, 395/396, 77–85. doi: 10.1023/A:1017011132649.CrossRefGoogle Scholar
  9. APHA. (1995). Standard methods (19th ed.). Washington, DC: American Public Health Association.Google Scholar
  10. Attayde, J. L., & Hansson, L.-A. (2001). The relative importance of fish predation and excretion effects on planktonic communities. Limnology and Oceanography, 46, 1001–1012.Google Scholar
  11. Barbour, M.T., Gerritsen, J., Snyder, B.D., & Stribling, J.B.(1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. xiv, 11 chapters, 4 appendices.Google Scholar
  12. Beveridge, M. C. M., Baird, D. J., Rahmatullah, S. M., Lawton, L. A., Beattie, K. A., & Codd, G. A. (1993). Grazing rates on toxic and non-toxic strains of cyanobacteria by Hypophthalmichthys molitrix and Oreochromis niloticus. Journal of Fish Biology, 43, 901–907. doi: 10.1111/j.1095-8649.1993.tb01164.x.CrossRefGoogle Scholar
  13. Blanco, S., Romo, S., & Fernandez-Alaez, M. (2008). Response of epiphytic algae to nutrient loading and fish density in a shallow lake: A mesocosm experiment. Hydrobiologia, 600, 65–76. doi: 10.1007/s10750-007-9176-0.CrossRefGoogle Scholar
  14. Brooks, J. L., & Dodson, S. I. (1965). Predation, body size and composition of plankton. Science, 150, 28–35. doi: 10.1126/science.150.3692.28.CrossRefGoogle Scholar
  15. Cairns, J,. Jr, McCormick, P. V., & Niedrlehner, B. R. (1993). A proposed framework for developing indicators of ecological health. Hydrobiologia, 263, 1–44. doi: 10.1007/BF00006084.CrossRefGoogle Scholar
  16. Cammen, L. M. (1980). Ingestion rate: An empirical model for aquatic deposit feeders and detritivores. Oecologia, 44, 303–310. doi: 10.1007/BF00545232.CrossRefGoogle Scholar
  17. Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.Google Scholar
  18. Carpenter, S. R., & Kitchell, J. F. (1993). The trophic cascade in lakes. Cambridge, UK: Cambridge University Press.Google Scholar
  19. Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cochran, P. A., Elser, J. J., Elser, M. M., et al. (1987). Regulation of lake primary productivity by food web structure. Ecology, 68, 1863–1876. doi: 10.2307/1939878.CrossRefGoogle Scholar
  20. Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1998). Impact of dissolved organic carbon, phosphorus and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography, 43, 73–80.Google Scholar
  21. Carpenter, S. R., Brock, W. A., Cole, J. J., Kitchell, J. F., & Pace, M. L. (2008). Leading indicators of trophic cascades. Ecology Letters, 11, 128–138.Google Scholar
  22. Collins, S. L., & Glenn, S. M. (1991). Importance of spatial and temporal dynamics in species regional abundance and distribution. Ecology, 73(2), 654–664. doi: 10.2307/2937205.CrossRefGoogle Scholar
  23. Coveney, M. F., Stites, D. L., Lowe, E. F., Battoe, L. E., & Conrow, R. (2002). Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering, 19, 141–159. doi: 10.1016/S0925-8574(02)00037-X.CrossRefGoogle Scholar
  24. Crumpton, W. G., Isenhart, T. M., & Mitchell, P. D. (1992). Nitrate and organic N analyses with second-derivative spectroscopy. Limnological Oceanography, 37, 907–913.CrossRefGoogle Scholar
  25. deBernardi, R., & Giussani, G. (1990). Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia, 200/201, 29–41.CrossRefGoogle Scholar
  26. Downing, J. A., & McCauley, E. (1992). The nitrogen: Phosphorus relationship in lakes. Limnology and Oceanography, 37, 936–945.Google Scholar
  27. Drake, M. T., & Pereira, D. L. (2002). Development of a fish-based index of biotic integrity for small inland lakes in Central Minnesota. North American Journal of Fisheries Management, 22, 1105–1123.CrossRefGoogle Scholar
  28. Drenner, R. W., & Hambright, K. D. (2002). Piscivores, trophic cascades, and lake management. The Scientific World Journal, 2, 284–307.Google Scholar
  29. Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the fresh waters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1468–1477.CrossRefGoogle Scholar
  30. Fleeger, J. W., Carman, K. R., Webb, S., Hilbun, N., & Pace, M. C. (1999). Consumption of microalgae by the grass shrimp Palaemonetes pugio. Journal of Crustacean Biology, 19(2), 324–336.CrossRefGoogle Scholar
  31. Forsberg, G., & Ryding, S. O. (1980). Eutrophication parameters and tropic state indices in 30 waste receiving Swedish lakes. Archiv fur Hydrobiology, 89, 189–207.Google Scholar
  32. Gulati, R. D., & van Donk, E. (2002). Lakes in The Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia, 478(1–3), 73–106.CrossRefGoogle Scholar
  33. Hansson, L. A., Annadoter, H., Bergman, E., Hamrin, S. F., Jeppesen, E., Kairesalo, T., et al. (1998). Biomanipulation as an application of food chain theory: Constraints, synthesis and recommendations for temperate lakes. Ecosystems, 1, 558–574.CrossRefGoogle Scholar
  34. Hansson, L. A., Gyllström, M., Ståhl-Delbanco, A., & Senssson, M. (2004). Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biology, 49, 1538–1550.CrossRefGoogle Scholar
  35. Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.CrossRefGoogle Scholar
  36. Hilden, M., & Rapport, D. (1993). Four centuries of cumulative impacts on a Finnish river and its estuary: An ecosystem health approach. Journal of Aquatic Ecosystem Stress and Recovery, 2(4), 261–275.CrossRefGoogle Scholar
  37. Hunt, R., & Matveev, V. F. (2005). The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica, 35, 90–101.Google Scholar
  38. Hutchinson, G. E. (1957). A treatise on limnology. Introduction to lake biology and limnoplankton, vol II. New York: Wiley.Google Scholar
  39. Hwang, S. J., Kim, H. S., & Shin, J. K. (2001). Filter-feeding effect of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Korean Journal of Limnology, 34(4), 298–309.Google Scholar
  40. Jeppesen, E., Jensen, J. P., Kristensen, P., Søndergaard, M., Mortensen, M., Sortkjaer, O., et al. (1990). Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. II. Threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227.CrossRefGoogle Scholar
  41. Jones, J. R., An, K.-G., & Knowlton, M. F. (2003). Trophic state, seasonal patterns and empirical models in South Korean reservoirs. Lake and Reservoir Management, 19(1), 64–78.CrossRefGoogle Scholar
  42. KARICO (2001). Report of water monitoring in Agricultureal reservoirs, S. Korea. Korea Agriculture and Rural Infrastructure Cooperation (in Korean)Google Scholar
  43. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27.CrossRefGoogle Scholar
  44. Karr, J. R., & Chu, E. W. (1997) Biological monitoring and assessment: Using multimetric indexes effectively. EPA 235-R97-001. Seattle: University of Washington.Google Scholar
  45. Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity of running waters: A method and its rationale. Special Publication 5. Champaign: Illinois Natural History Survey.Google Scholar
  46. Kasai, F., Takamura, N., & Hatakeyama, S. (1993). Effects of symetrine on growth of various freshwater algal taxa. Environmental Pollution, 76, 77–83.CrossRefGoogle Scholar
  47. Kim, I. S. (1995). The conservation and status of threatened freshwater fishes in Korea. In H.-J. Lee & I. S. Kim (Eds.), Proceedings of ichthyofauna and characteristics of freshwater ecosystems in Korea, pp. 31–50. Seoul: The Ecological Society of Korea and The Korean Society of Ichthyology.Google Scholar
  48. Kim, H.-S., & Hwang, S.-J. (2004). Effects of nutrients and N/P ratio stoichiometry on phytoplankton growth in an eutrophic reservoir. Korean Journal of Limnology, 37(1), 36–46.Google Scholar
  49. Kim, I. S., & Park, J. Y. (2002). Freshwater fish of korea. Seoul: Kyo-Hak.Google Scholar
  50. Kim, H.-S., Hwang, S.-J., Shin, J.-K., An, K.-G., & Yoon, C.-G. (2007). Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia, 581, 255–267.CrossRefGoogle Scholar
  51. Kratzer, C. R., & Brezonik, P. L. (1981). A Carlson-type trophic state index for nitrogen in Florida lakes. Water Research Bulletin, 17, 713–715.Google Scholar
  52. Lammens, E. M. R. R. (1988). Trophic interactions in the hypertrophic Lake Tjenke Meere: Top-down and bottom-up effects in relation to hydrology, predation and bioturbation during the period 1974 to 1985. Limnologica, 19, 81–87.Google Scholar
  53. Lammens, E. H. R. R. (1999). The central role of fish in lake restoration and management. Hydrobiologia, 395/396, 191–198.CrossRefGoogle Scholar
  54. Lieberman, D. M. (1996). Use of silver carp (Hypophthalmichthys molotrix) and bighead carp (Aristichthys nobillis) for algae control in a small pond: Changes in water quality. Journal of Freshwater Ecology, 11(4), 391–393.Google Scholar
  55. Marker, A. F. H., Crowther, C. A., & Gunn, R. J. M. (1980). Methanol and acetone as solvents for estimating chlorophyll and pheopigments by spectrophotometry. Ergebnisse der Limnologie, 14, 52–69.Google Scholar
  56. Meijer, M. L., Jeppesen, E., van Donk, E., Moss, B., Sceffer, N., Lammens, E., et al. (1994). Long term responses to fish reduction in small shallow lakes: interpretation five year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia, 275/276, 457–464.CrossRefGoogle Scholar
  57. Meijer, M.-L., DeBoos, I., Scheffer, M., Portielje, R., & Hosper, H. (1999). Biomanipulation in shallow lakes in the Netherlands: An evaluation of 18 case studies. Hydrobiologia, 408/409, 13–30.CrossRefGoogle Scholar
  58. Miura, T. (1990). The effects of planktivorous fishes on the plankton community in a eutrophic lake. In R. D. Gulati, E. H. R. R. Lammens, M. L. Meijer & E. van Donk (Eds.), Biomanipulation-tool for water management, pp. 567–579. Dordrecht, Belgium: Kluwer Academic.Google Scholar
  59. Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20(3), 315–327.CrossRefGoogle Scholar
  60. Moss, B. (1999). Ecological challenges for lake management. Hydrobiologia, 395/396, 3–11.CrossRefGoogle Scholar
  61. Nurnberg, G. K. (1996). Trophic state of clear and colored, soft- and hard-water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reservoir Management, 12, 432–447.CrossRefGoogle Scholar
  62. Onkal-Engin, G., Demir, I., & Engin, S. N. (2005). Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software, 20, 843–850.CrossRefGoogle Scholar
  63. Persson, L., Andersson, G., Hamrin, S. F., & Johansson, L. (1988). Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (Ed.), Complex interactions in lake communities, pp. 45–65. New York: Springer.Google Scholar
  64. Phillips, N. W. (1984). Compensatory intake can be consistent with an optimal foraging model. The American Naturalist, 123(6), 867–872.CrossRefGoogle Scholar
  65. Pick, F. R., & Lean, D. R. S. (1987). The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zealand Journal of Marine and Freshwater research, 21, 425–434.CrossRefGoogle Scholar
  66. Pitois, S., Jackson, M. H., & Wood, B. J. B. (2001). Sources of the eutrophication problems associated with toxic algae: An overview. Journal of Environmental Health, 64, 25–32.Google Scholar
  67. Prokopkin, I. G., Gubanov, V. G., & Gladyshev, M. I. (2006). Modelling the effect of planktivorous fish removal in a reservoir on the biomass of cyanobacteria. Ecological Modelling, 190(3–4), 419–431.CrossRefGoogle Scholar
  68. Quirós, R. (2002). The nitrogen to phosphorus ratio for lakes: A cause or a consequence of aquatic biology? In Cirelli Fernandez & G. Chalar Marquisa (Eds.), El Agua en Iberoamerica: De la Limnologia a la Gestion en Sudamerica, pp. 11–26. Buenos Aires, Argentina: CYTED XVII, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires.Google Scholar
  69. Rabergh, C. M. I., Bylund, G., & Eriksson, J. E. (1991). Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa, on common carp. Aquatic Toxicology, 20, 131–146.CrossRefGoogle Scholar
  70. Rankin, E. T., & Yoder, C. O. (1999). Adjustments to the index of biotic integrity: A summary of Ohio experiences and some suggested modifications. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities. Boca Raton, FL: CRC.Google Scholar
  71. Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.Google Scholar
  72. Romare, P., & Bergman, E. (1999). Juvenile fish expansion following biomanipulation and resulting effect on the predation pressure on zooplankton. Hydrobiologia, 404, 89–97.CrossRefGoogle Scholar
  73. Romo, S., Miracle, M. R., Villens, M.-J., Rueda, J., Ferriol, C., & Vicente, E. (2004). Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology, 49, 1593–1607.CrossRefGoogle Scholar
  74. Sanders, R. E., Miltner, R. J., Yoder, C. O., & Rankin, E. T. (1999). The use of external deformities, erosion, lesions, tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: A case study of seven Ohio streams. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities. Boca Raton, FL: CRC.Google Scholar
  75. Schauser, I., Chorus, I., & Heinzmann, B. (2006). Strategy and current status of combating eutrophication in two Berlin Lakes for safeguarding drinking water resources. Water Science & Technology, 54(11–12), 93–100.CrossRefGoogle Scholar
  76. Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184, 897–899.CrossRefGoogle Scholar
  77. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195, 260–262.CrossRefGoogle Scholar
  78. Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1997). Food web structure alters carbon exchange between lakes and the atmosphere. Science, 277, 248–251.CrossRefGoogle Scholar
  79. Schwarz, D., Grosch, R., & Gross, W. (2004). Water quality for hydroponics: Nutrients, bacteria and algae in rainwater ponds. Acta Horticulturae, 644, 533–539.Google Scholar
  80. Shapiro, J., & Wright, D. I. (1984). Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater biology, 14, 371–383.CrossRefGoogle Scholar
  81. Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669–671.CrossRefGoogle Scholar
  82. Smith, D. W. (1989). The feeding selectivity of silver carp Hypophthalmicthys molitrix Val. Journal of Fish Biology, 34, 819–828.CrossRefGoogle Scholar
  83. SPSS (2004). SPSS 12.0 KO for Windows. Apache Software Foundation.Google Scholar
  84. Starling, F. L. R. M. (1993). Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): A mesocosm experiment. Hydrobiologia, 257, 143–152.CrossRefGoogle Scholar
  85. Starling, F. L. R. M., & Rocha, A. J. A. (1990). Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of tropical Brazilian reservoir. In R. D. Gulati, E. H. R. R. Lammens, M. L. Meijer & E. van Donk (Eds.), Biomanipulation-tool for water management, pp. 581–591. Dordrecht: Kluwer Academic.Google Scholar
  86. Tada, K., Sakai, K., Nakano, Y., Takemura, A., & Montani, S. (2003). Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Journal of Plankton Research, 25(8), 991–997.CrossRefGoogle Scholar
  87. Tong, S. T. Y. (2001). An integrated exploratory approach to examining the relationships of environmental stressors and fish responses. Journal of Aquatic Ecosystem Stress and Recovery, 9, 1–19.CrossRefGoogle Scholar
  88. U.S. Environmental Protection Agency (U.S. EPA). (1993). Fish field and laboratory methods for evaluating the biological integrity of surface waters. U.S. Environmental Monitoring Systems Laboratory-Cincinnati, Office of Modelling, Monitoring Systems and Quality Assurance, Cincinnati, Ohio 45268, USA. EPA 600-R-92-111.Google Scholar
  89. U.S. Environmental Protection Agency (U.S. EPA). (1994). Environmental monitoring and assessment program: Integrated quality assurance project plan for the surface waters resource group, 1994 activities, Rev. 2.00. U.S. Environmental Protection Agency, Las Vegas, NV. EPA 600/X-91/080.Google Scholar
  90. U.S. Environmental Protection Agency (U.S. EPA). (1998). Lake and reservoir bioassessment and biocriteria technical guidance document. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA-841-B-98-007.Google Scholar
  91. van Donk, E., Gulati, R. D., & Grimm, M. P. (1990). Restoration by biomanipulation in a small hepertrophic lake: First-year results. Hydrobiologia, 191, 285–295.CrossRefGoogle Scholar
  92. Van Liere, L. (Ed.), (1986). Flushing as a tool to combat eutrophication in L. vuntus (in Dutch). WQL Report 1986-3.Google Scholar
  93. Vanni, M. J. (2002). Nutrient cycling by animals in fresh water ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
  94. Vanni, M. J., & Layne, C. D. (1997). Nutrient recycling and herbivory as mechanisms in the ‘top-down’ effect of fish and algae in lakes. Ecology, 78, 21–40.Google Scholar
  95. Vollenweider, A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dellIstituto Italino di Idrobiologia (International Journal of Limnology), 33, 53–83.Google Scholar
  96. Wang, H.-J., Liang, X.-M., Jiang, P.-H., Wang, J., Wu, S.-K., & Wang, H.-Z. (2008). TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes. Freshwater Biology, 53, 935–944.CrossRefGoogle Scholar
  97. Weithman, A. S., & Anderson, R. O. (1976). Angling vulnerability of Esocidae. Proceedings of the Annual Conference of South East Association of Game Fish Commissioners, 30, 99–102.Google Scholar
  98. Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs, 60, 331–367.CrossRefGoogle Scholar
  99. Xu, F.-L., Tao, S., & Xu, Z.-R. (1999). The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: Possibilities and effects. Hydrobiologia, 405, 169–178.CrossRefGoogle Scholar
  100. Zhang, X., Xie, P., Hao, L., Guo, N., Gong, Y., Hu, X., et al. (2006). Effects of the phytoplanktivorous silver carp (Hypophthalmicthys molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing. Aquaculture, 257, 173–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kwang-Guk An
    • 1
  • Jae-Yon Lee
    • 1
  • Hema K. Kumar
    • 1
  • Sang-Jae Lee
    • 1
  • Soon-Jin Hwang
    • 2
  • Baik-Ho Kim
    • 2
  • Young-Seuk Park
    • 3
  • Kyung-Hoon Shin
    • 4
  • Sangkyu Park
    • 5
  • Han-Yong Um
    • 6
  1. 1.School of Bioscience and BiotechnologyChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of Environmental ScienceKonkuk UniversitySeoulSouth Korea
  3. 3.Department of BiologyKyunghee UniversitySeoulSouth Korea
  4. 4.Department of Environmental Marine ScienceHanyang UniversityAnsanSouth Korea
  5. 5.Department of Biological ScienceAjou UniversitySuwonSouth Korea
  6. 6.Rural Research InstituteGyeonggiSouth Korea

Personalised recommendations