Water, Air, and Soil Pollution

, 204:227 | Cite as

Comparison of Sewage and Coal-Mine Wastes on Stream Macroinvertebrates Within an Otherwise Clean Upland Catchment, Southeastern Australia

  • Ian A. Wright
  • Shelley Burgin


Macroinvertebrates have been widely used in freshwater ecosystems as surrogates to assess the impacts of waste discharges and water pollution. However, often interpretations have been made on the impact of one pollutant in the presence of others that may provide an unidentified additive effective or otherwise confound the results. There have been few opportunities to study the impact of pollutants without such potentially confounding effects. We studied macroinvertebrates using a replicated kick sampling technique and identified to the family level to assess and compare the effects of zinc-rich coal-mine waste and organic pollution from treated sewage on an otherwise clean upland stream network within a world heritage area. We used multivariate analysis of macroinvertebrate assemblages from polluted and clean sites to measure and compare the effect of each waste impact to community structure. We also calculated three widely used biotic indices (Ephemeroptera, Plecoptera and Trichoptera (EPT) family richness, family richness, and abundance) and found that the EPT index was the only one to respond to both pollution types. Macroinvertebrate abundance was an important attribute of the study, with each source of pollution having a contrasting effect on total abundance. It also helped us to measure the relative response of families to each pollutant. There was an initial significant modification of macroinvertebrate assemblages below the outflow of each of the pollutants, followed by different degrees of recovery downstream.


Organic Heavy metal Zinc Pollution Water quality NMDS Abundance EPT richness 



This study formed part of the senior author’s PhD research at the University of Western Sydney. Sydney Water made laboratory facilities and sampling apparatus available for use for this study. Susan Alexandra Wright and other volunteers generously assisted with field work, and Oleg Nicetic conducted univariate data analysis. We are grateful for the comments by Dr Debbie Rae, Dr Helen Nice and anonymous referees on this manuscript.


  1. ANZECC (Australian and New Zealand Environment and Conservation Council). (2000). Australian and New Zealand guidelines for fresh and marine waters. Canberra: Australian and New Zealand Environment and Conservation Council.Google Scholar
  2. APHA (American Public Health Association). (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  3. Armitage, P. D. (1980). The effects of mine drainage and organic enrichment on benthos in the River Nent system, Northern Pennines. Hydrobiologia, 74, 119–128. doi: 10.1007/BF00014563.CrossRefGoogle Scholar
  4. Armitage, P. D., & Blackburn, J. H. (1985). Chironomidae in a Pennine stream system receiving mine drainage and organic enrichment. Hydrobiologia, 121, 165–172. doi: 10.1007/BF00008720.CrossRefGoogle Scholar
  5. Barbour, M. T., Plafkin, J. L., Bradley, B. P., Graves, C. G., & Wisseman, R. W. (1992). Evaluation of EPA’s rapid bioassessment benthic metrics: Metric redundancy and variability among reference stream sites. Environmental Toxicology and Chemistry, 11, 437–449. doi: 10.1897/1552-8618(1992)11[437:EOERBB]2.0.CO;2.CrossRefGoogle Scholar
  6. BMCC (Blue Mountains City Council). (2002). State of the Environment Report 2001/2002. Katoomba, NSW: Blue Mountains City Council.Google Scholar
  7. Camargo, J. A., Alonso, A., & De La Puente, M. (2004). Multimetric assessment of nutrient enrichment in impounded rivers based on benthic macroinvertebrates. Environmental Monitoring and Assessment, 96, 233–249. doi: 10.1023/B:EMAS.0000031730.78630.75.CrossRefGoogle Scholar
  8. Chessman, B. C. (1995). Rapid assessment of rivers using macroinvertebrates: A procedure based on habitat-specific sampling, family level identification and a biotic index. Australian Journal of Ecology, 20, 122–129. doi: 10.1111/j.1442-9993.1995.tb00526.x.CrossRefGoogle Scholar
  9. Chessman, B. C. (2003). New sensitivity grades for Australian river macroinvertebrates. Marine & Freshwater Research, 54, 95–103. doi: 10.1071/MF02114.CrossRefGoogle Scholar
  10. Chessman, B. C., & McEvoy, P. K. (1998). Towards diagnostic biotic indices for river macroinvertebrates. Hydrobiologia, 364, 169–182. doi: 10.1023/A:1003142819625.CrossRefGoogle Scholar
  11. Chessman, B. C., & Williams, S. A. (1999). Biodiversity and conservation of river macroinvertebrates. Pacific Conservation Biology, 5, 36–55.Google Scholar
  12. Chutter, F. M. (1972). An empirical biotic index of the quality of water in South African streams and rivers. Water Research, 6, 19–30. doi: 10.1016/0043-1354(72)90170-4.CrossRefGoogle Scholar
  13. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x.CrossRefGoogle Scholar
  14. Connell, D. W., & Miller, G. J. (1984). Chemistry and Ecotoxicology of Pollution. New York, Brisbane: John Wiley & Sons.Google Scholar
  15. Corkum, L. D. (1989). Patterns of benthic invertebrate assemblages in rivers of northwestern North America. Freshwater Biology, 21, 191–205. doi: 10.1111/j.1365-2427.1989.tb01358.x.CrossRefGoogle Scholar
  16. Cosser, P. R. (1988). Macroinvertebrate community structure and chemistry of an organically polluted creek in south-east Queensland. Australian Journal of Marine and Freshwater Research, 39, 671–683. doi: 10.1071/MF9880671.CrossRefGoogle Scholar
  17. Cranston, P. S. (1995). Biogeography. In P. Armitage, et al. (Ed.), The Chironomidae: The biology and ecology of non-biting midges (pp. 180–197). Melbourne: Chapman & Hall.Google Scholar
  18. EPA (NSW Environment Protection Authority) (2001). Canyon Colliery, Environment Protection Licence. Licence 558. Accessed 19 February 2009.
  19. Fairweather, P. G. (1990). Sewage and the biota on seashores: Assessment of impact in relation to natural variability. Environmental Monitoring and Assessment, 14, 197–210. doi: 10.1007/BF00677916.CrossRefGoogle Scholar
  20. Gerhadt, A., Janssens de Bisthoven, L., & Soares, A. M. V. M. (2004). Macroinvertebrate response to acid mine drainage: Community metrics and on-line behavioural toxicity bioassay. Environmental Pollution, 130, 263–274. doi: 10.1016/j.envpol.2003.11.016.CrossRefGoogle Scholar
  21. Gresens, S. E., Belt, K. T., Tang, J. A., Gwinn, D. C., & Banks, P. A. (2007). Temporal and spatial responses of Chironomidae (Diptera) and other benthic invertebrates to urban stormwater runoff. Hydrobiologia, 575, 173–190. doi: 10.1007/s10750-006-0366-y.CrossRefGoogle Scholar
  22. Growns, J. E., Chessman, B. C., McEvoy, P. K., & Wright, I. A. (1995). Rapid assessment of rivers using macroinvertebrates: Case studies in the Nepean River and Blue Mountains, NSW. Australian Journal of Ecology, 20, 130–141. doi: 10.1111/j.1442-9993.1995.tb00527.x.CrossRefGoogle Scholar
  23. Hawking, J. H. (1994). A preliminary guide to keys and zoological information to identify invertebrates from Australian freshwaters. Cooperative Research Centre for Freshwater Ecology Identification Guide No. 2.Albury, NSW: Cooperative Research Centre for Freshwater Ecology.Google Scholar
  24. Hellawell, J. M. (1986). Biological Indicators of Freshwater Pollution and Environmental Management. London: Elesvier.Google Scholar
  25. Herlihy, A. T., Kaufman, P. R., Mitch, M. E., & Brown, D. D. (1990). Regional estimates of acid mine drainage impact on streams in the mid-Atlantic and southeastern United States. Water, Air, and Soil Pollution, 50, 91–107. doi: 10.1007/BF00284786.CrossRefGoogle Scholar
  26. Hickey, C. W., & Clements, W. H. (1998). Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams. Environmental Toxicology and Chemistry, 17, 2338–2346. doi: 10.1897/1551-5028(1998)017<2338:EOHMOB>2.3.CO;2.CrossRefGoogle Scholar
  27. Hynes, H. B. N. (1960). The Biology of Polluted Waters. Liverpool: Liverpool University Press.Google Scholar
  28. Johnson, D. B. (2003). Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air, and Soil Pollution, 3, 47–66.Google Scholar
  29. Jolly, V. H., & Chapman, M. A. (1966). A preliminary biological study of the effects of pollution on Farmers’s Creek and Cox’s River, New South Wales. Hydrobiologia, 27, 160–192. doi: 10.1007/BF00161494.CrossRefGoogle Scholar
  30. Keith, D. A., & Benson, D. H. (1988). Natural vegetation of the Katoomba area. Cunninghamia, 2, 107–144.Google Scholar
  31. Kitchin, P. L. (2005). Measuring the amount of statistical information in the EPT index. Environmetrics, 16, 51–59. doi: 10.1002/env.670.CrossRefGoogle Scholar
  32. Lenat, D. R. (1988). Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Bulletin of the North American Benthological Society, 7, 222–233. doi: 10.2307/1467422.CrossRefGoogle Scholar
  33. Lenat, D. R., & Penrose, D. L. (1996). History of the EPT taxa richness metric. Bulletin of the North American Benthological Society, 13, 305–307.Google Scholar
  34. Mackey, A. P. (1988). The biota of the River Dee (central Queensland, Australia) in relation to the effects of acid mine drainage. Proceedings of the Royal Society of Queensland, 99, 9–19.Google Scholar
  35. Macqueen, A. (2007). Back from the Brink. Blue Gum Forest and the Grose Wilderness. Second Edition. 8 Angel St, Wentworth Falls, NSW; self-published.Google Scholar
  36. Malmqvist, B., & Hoffsten, P. (1999). Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Research, 33, 2415–2423. doi: 10.1016/S0043-1354(98)00462-X.CrossRefGoogle Scholar
  37. Marchant, R., Barmutta, L. A., & Chessman, B. C. (1994). Preliminary study of the ordination and classification of macroinvertebrate communities from running waters in Victoria, Australia. Australian Journal of Marine and Freshwater Research, 45, 945–962. doi: 10.1071/MF9940945.CrossRefGoogle Scholar
  38. Marqués, M. J., Martínez-Conde, E., & Rovira, J. V. (2003). Effects of zinc and lead mining on the benthic macroinvertebrates of a fluvial ecosystem. Water, Air, and Soil Pollution, 148, 363–388. doi: 10.1023/A:1025411932330.CrossRefGoogle Scholar
  39. McCord, S. B., Grippo, R. S., & Eagle, D. M. (2007). Effects of silviculture using best management practices on stream macroinvertebrate communities in three ecoregions of Arkansas, USA. Water, Air, and Soil Pollution, 184, 299–311. doi: 10.1007/s11270-007-9417-x.CrossRefGoogle Scholar
  40. Metzeling, L., Perriss, S., & Robinson, D. (2006). Can the detection of salinity and habitat simplification gradients using rapid bioassessment of benthic invertebrates be improved through finer taxonomic resolution or alternatives indices? Hydrobiologia, 572, 235–252. doi: 10.1007/s10750-005-9004-3.CrossRefGoogle Scholar
  41. Napier, G. M. (1992). Application of laboratory-derived data to natural aquatic ecosystems. PhD thesis. Graduate School of the Environment, Macquarie University.Google Scholar
  42. Norris, R. H. (1986). Mine waste pollution of the Molonglo River, New South Wales and the Australian Capital Territory: Effectiveness of remedial works at Captains Flat mining area. Australian Journal of Marine and Freshwater Research, 37, 147–157. doi: 10.1071/MF9860147.CrossRefGoogle Scholar
  43. Norris, R. H., Lake, P. S., & Swain, R. (1982). Ecological effects of mine effluents on the South Esk River, north-eastern Tasmania (III). Benthic macroinvertebrates. Australian Journal of Marine and Freshwater Research, 33, 789–809. doi: 10.1071/MF9820789.CrossRefGoogle Scholar
  44. NPWS (National Parks and Wildlife Service). (1999). Blue Mountains National Park, Walking Track Guide. Walking Tracks in the Grose Valley. Blue Mountains Heritage Centre, Blackheath, NSW: self-published.Google Scholar
  45. NPWS (National Parks and Wildlife Service). (2001). Blue Mountains National Park Plan of Management. Blue Mountains Heritage Centre, Blackheath, NSW: self-published.Google Scholar
  46. Pinder, L. C. V., & Far, I. S. (1987). Biological surveillance of water quality. 3. The influence of organic enrichment on the macroinvertebrate fauna of small chalk streams. Archiv fuer Hydrobiologie, 109, 619–637.Google Scholar
  47. Plafkin, J. L., Barbour, M. T., Porter, K. D., Grosse, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. Washington D.C.: United States Environmental Protection Agency.Google Scholar
  48. Resh, V. H., & Jackson, J. K. (1993). Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater Biomonitoring and Benthic Macroinvertebrates (pp. 195–223). New York, London: Chapman & Hall.Google Scholar
  49. Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York, London: Chapman & Hall.Google Scholar
  50. Say, P. J., & Whitton, B. A. (1981). Changes in flora down a stream showing a zinc gradient. Hydrobiologia, 76, 255–262. doi: 10.1007/BF00006217.CrossRefGoogle Scholar
  51. Sheehan, P. J. (1984). Effects on community and ecosystem structure and dynamics. In P. J. Sheehan, et al. (Ed.), Effects of Pollutants at the Ecosystem Level (pp. 51–100). Chichester, New York: John Wiley & Sons.Google Scholar
  52. Short, T., Black, J. A., & Birge, W. J. (1990). Effects of acid-mine drainage on the chemical and biological character of an alkaline headwater stream. Archives of Environmental Contamination and Toxicology, 19, 241–248. doi: 10.1007/BF01056093.CrossRefGoogle Scholar
  53. Sloane, P. I. W., & Norris, R. H. (2003). Relationship of AUSRIVAS-based macroinvertebrate predictive model outputs to a metal pollution gradient. Journal of the North American Benthological Society, 22, 457–471. doi: 10.2307/1468274.CrossRefGoogle Scholar
  54. Sydney Water Corporation. (2004). Annual Environmental Indicators Compliance Report 2003/2004. Sydney, NSW: Sydney Water Corporation.Google Scholar
  55. Underwood, A. J. (1991). Beyond BACI: Experimental designs for detecting human environmental impacts on temporal variations in natural populations. Australian Journal of Marine and Freshwater Research, 42, 569–587. doi: 10.1071/MF9910569.CrossRefGoogle Scholar
  56. Walsh, C. J., Sharpe, A. K., Breen, P. F., & Sonneman, J. A. (2001). Effects of urbanisation on streams of the Melbourne region, Victoria, Australia. I. Benthic macroinvertebrate communities. Freshwater Biology, 46, 535–551. doi: 10.1046/j.1365-2427.2001.00690.x.CrossRefGoogle Scholar
  57. Warwick, R. M. (1993). Environmental impact studies on marine communities: Pragmatical considerations. Australian Journal of Ecology, 18, 63–80. doi: 10.1111/j.1442-9993.1993.tb00435.x.CrossRefGoogle Scholar
  58. Whitehurst, I. T., & Lindsey, B. I. (1990). The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river. Water Research, 24, 625–630. doi: 10.1016/0043-1354(90)90195-C.CrossRefGoogle Scholar
  59. Winner, R. W., Van Dyke, J. S., Caris, N., & Farrell, M. P. (1975). Response of the macroinvertebrate fauna to a copper gradient in an experimental polluted stream. Vereiningung für theoretische und angewandte Limnologie, 19, 2121–2127.Google Scholar
  60. Winterbourn, M. J. (1998). Insect faunas of acidic coal mine drainages in Westland, New Zealand. New Zealand Journal of Entomology, 21, 65–72.Google Scholar
  61. Wright, I. A. (1994). The ecological impacts of Wentworth Falls sewage treatment plant on Blue Mountains Creek. MSc thesis. Graduate School of the Environment, Macquarie University.Google Scholar
  62. Wright, I. A. (2006). Australian Chironomidae (Diptera) in upland streams and freshwater lakes, PhD thesis, University of Western Sydney.Google Scholar
  63. Wright, I. A., Chessman, B. C., Fairweather, P. G., & Benson, L. J. (1995). Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: The effect of different levels of taxonomic resolution and quantification. Australian Journal of Ecology, 20, 142–149. doi: 10.1111/j.1442-9993.1995.tb00528.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Health and ScienceUniversity of Western SydneySydneyAustralia

Personalised recommendations