Water, Air, and Soil Pollution

, Volume 204, Issue 1–4, pp 139–153 | Cite as

Phosphorus Fractionation in Sediment Cores Collected In 2005 Before and After Onset of an Aphanizomenon flos-aquae Bloom in Upper Klamath Lake, OR, USA

  • Nancy S. Simon
  • Dennis Lynch
  • Thomas N. Gallaher
Article

Abstract

We tested the hypothesis that there would be measurable losses of phosphorus (P) from surficial sediments of Upper Klamath Lake (UKL), Oregon, if sediments were a source of P during an algal bloom. We compared concentrations of total and forms of P at various depths in cores collected before and after the onset of a large Aphanizomenon flos-aquae bloom. Concentrations of inorganic P were determined in extraction solutions of MgCl2 (1 M, pH 8), citrate-dithionite-bicarbonate, and 1 M HCl. Sediments below 2 cm were dominated by residual P which is defined as total P minus inorganic P. During the study period, data from the top 2-cm of sediment indicated (a) significant decrease in total P concentration, primarily associated with iron oxyhydroxides at one site, and (b) significant increase in total P concentration associated with residual P at a second site. Data from two other sites indicated no net changes in concentrations of total P.

Keywords

Phosphorus fractionation Residual phosphorus Cyanophyte Eutrophic Shallow lake Metals 

References

  1. Anderson, L. D., & Delaney, M. L. (1999). Sequential Extraction and Analysis of Phosphorus in Marine Sediments: Streamlining of the SEDEX Procedure. Limnology and Oceanography, 45, 509–515.Google Scholar
  2. Andersson, G., Granéli, W., & Stenson, J. (1988). The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia, 170, 267–284.Google Scholar
  3. Andrieux, F. & Aminot, A. (1996). Concept and determination of exchangeable phosphate in aquatic sediments. Water Research, 30, 2805–2811.CrossRefGoogle Scholar
  4. Andrieux-Loyer, F., Philippon, X., Bally, G., Kérouel, R., Youenou, A., & Le Grand, J. (2008). Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium Minutum. Biogeochemistry, 88, 213–231. doi:10.1007/s10533-008-9199-2.CrossRefGoogle Scholar
  5. Aspila, K. I., Agemian, H., & Chau, A. S. Y. (1976). A semi-automatic method for the determination of inorganic, organic and total phosphate in sediments. Analyst (London), 101, 87–197. doi:10.1039/an9760100187.CrossRefGoogle Scholar
  6. Bradbury, J. P., Colman, S. M., & Dean, W. E. (2004a). Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45 000 years. Journal of Paleolimnology, 31, 167–188. doi:10.1023/B:JOPL.0000019232.74649.02.CrossRefGoogle Scholar
  7. Bradbury, J. P., Colman, S. M., & Reynolds, R. L. (2004b). The history of recent limnological changes and human impact on Upper Klamath Lake. Oregon. Journal of Paleolimnology, 31, 151–165. doi:10.1023/B:JOPL.0000019233.12287.18.CrossRefGoogle Scholar
  8. Brantley, S. L., Liermann, L. J., Guynn, R. L., Anbar, A., Icopini, G. A., & Barling, J. (2004). Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta, 68, 3189–3204. doi:10.1016/j.gca.2004.01.023.CrossRefGoogle Scholar
  9. Brunberg, A. -K., Blomqvist, P., & Rydin, E. (2002). Contrasting ontogeny among ephemeral hardwater lakes as revealed by sediment P-fractionation. Archiv fuer Hydrobiologie, 153, 491–502.Google Scholar
  10. Brunberg, A. -K., & Boström, B. (1992). Coupling between benthic biomass of Microcystis and phosphorus release from the sediments of a highly eutrophic lake. Hydrobiologia, 235/236, 375–385. doi:10.1007/BF00026227.CrossRefGoogle Scholar
  11. Cade-Menum, B. J., & Preston, C. M. (1996). A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science, 161, 770–785. doi:10.1097/00010694-199611000-00006.CrossRefGoogle Scholar
  12. Cade-Menum, B. J., Navaratnam, J. A., & Walbridge, M. R. (2006). Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environmental Science & Technology, 40, 7874–7880. doi:10.1021/es061843e.CrossRefGoogle Scholar
  13. Carman, R., Edlund, G., & Damberg, C. (2000). Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chemical Geology, 163, 101–114. doi:10.1016/S0009-2541(99)00098-4.CrossRefGoogle Scholar
  14. Colman, S. M., Bradbury, J. P., McGeehin, C. W., Holmes, C. W., Edginton, D., & Sarna-Wojcicki, A. M. (2004b). Chronology of sediment deposition in Upper Klamath Lake, Oregon. Journal of Paleolimnology, 31, 139–149. doi:10.1023/B:JOPL.0000019234.05899.ea.CrossRefGoogle Scholar
  15. Colman, S. M., Bradbury, J. P., & Rosenbaum, G. (2004a). Paleolimnology and paleoclimate studies in Upper Klamath Lake, Oregon. Journal of Paleolimnology, 31, 129–138. doi:10.1023/B:JOPL.0000019235.72107.92.CrossRefGoogle Scholar
  16. Eilers, J. M., Bernert, J. A., Gubala, C. P., Whiting, M. C., Engstrom, D. R., & Charles, D. F. (1996). Recent paleolimnology of Devils Lake, Oregon. Northwest Science, 70, 13–27.Google Scholar
  17. Filippelli, G. M., Souch, C., Menounos, B., Slater-Atwater, S., Jull, A. J. T., & Slaymaker, O. (2006). Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quaternary Research, 66, 158–166. doi:10.1016/j.yqres.2006.03.009.CrossRefGoogle Scholar
  18. Fukuhara, H., & Sakamota, M. (1987). Enhancement of inorganic nitrogen and phosphate release from sediment by tubificid worms and chironomid larvae. Oikos, 48, 312–320. doi:10.2307/3565519.CrossRefGoogle Scholar
  19. Harrison, M. J., Pacha, R. E., & Morita, R. Y. (1972). Solubilization of inorganic phosphates by bacteria isolated from Klamath Lake sediment. Limnology and Oceanography, 17, 50–57.Google Scholar
  20. Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407.CrossRefGoogle Scholar
  21. Hoilman, G. R., Lindenberg, M. K., & Wood, T. M.(2008). Water quality conditions in Upper Klamath and Agency Lakes, Oregon, 2005. U.S. Geological Survey Scientific Investigations Report 2008-5026.Google Scholar
  22. Hupfer, M., & Rübe, B. (2004). Origin and diagenesis of polyphosphate in lake sediments: A 31P-NMR study. Limnology and Oceanography, 49, 1–10.CrossRefGoogle Scholar
  23. Klamath Consulting Service, Inc.(1983) EPA 314 clean lakes program: phase I diagnostic/feasibility project: Upper Klamath Lake, Oregon. (pdf) http://klamathwaterlib.oit.edu/inside/How%20ti%20cute.pdf. Accessed 6 February 2009.
  24. Kleeberg, A. (2002). Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. Hydrobiologia, 472, 53–65. doi:10.1023/A:1016356714276.CrossRefGoogle Scholar
  25. Koopmans, G. F., Chardon, W. J., Dolfing, J., Oenema, O., van der Meer, P., & van Riemsdijk, W. H. (2003). Wet chemical and phosphorus-31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications. Journal of Environmental Quality, 32, 287–295.Google Scholar
  26. Kuwabara, J. S., Lynch, D. D., Topping, B. R., Murphy, F., Carter, J. L., Simon, N. S., Parchaso, F., Wood, T.M., Lindenberg, M.K., Wiese, K., & Avanzino, R.(2007). Quantifying the benthic source of nutrients to the water column of Upper Klamath Lake, Oregon. U.S. Geological Survey Open-File Report 2007–1276.Google Scholar
  27. Laenen, A., & LeTourneau, A. P. (1996). Upper Klamath Basin Nutrient-Loading Study-Estimate of wind-induced resuspension of bed sediment during periods of low lake elevation. U.S.Geological Survey Open-File Report 95–414Google Scholar
  28. Lennox, L. J. (1984). Lough Ennell: laboratory studies on sediment phosphorus release under varying mixing, aerobic and anaerobic conditions. Freshwater Biology, 14, 183–187. doi:10.1111/j.1365-2427.1984.tb00032.x.CrossRefGoogle Scholar
  29. Mortimer, C. H. (1972). Chemical exchanges between sediments and water in the Great-Lakes – Speculations on probable regulatory mechanisms. Limnology and Oceanography, 16, 387–404.CrossRefGoogle Scholar
  30. National Research Council (2004). Endangered and threatened fishes in the Klamath River Basin: Causes of decline and strategies for recovery Committee on Endangered and Threatened Fishes in the Klamath River Basin, National Research Council, Executive Summary by the National Academies. Washington, D.C.: National Academies Press.Google Scholar
  31. Oregon Department of Environmental Quality (2002). Upper Klamath Lake Drainage Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP) p. 586. Portland, OR, 97204: State of Oregon Department of Environmental Quality.Google Scholar
  32. Ostrofsky, M. L. (1987). Phosphorus species in the surficial sediments of lakes of eastern North America. Canadian Journal of Fisheries and Aquatic Sciences, 44, 960–966. doi:10.1139/f87-114.CrossRefGoogle Scholar
  33. Rand, M. C., Greenberg, A. E., & Taras, M. J.(1976). Standard methods for the Examination of Water and Wastewater, 14th edition, (pp. 466–483) American Public Health Association American Water Works Association and Water Pollution Control Federation, Washington, D.C.Google Scholar
  34. Reynolds, R. L., Rosenbaum, J. G., Rapp, J., Kerwin, W., Bradbury, J. P., Colman, S., & Adam, D. (2004). Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon. Journal of Paleolimnology, 31, 217–233. doi:10.1023/B:JOPL.0000019230.42575.03.CrossRefGoogle Scholar
  35. Robert, M., & Chenu, C. (1992). Interactions between soil minerals and microorganisms. In G. Stotzky, & J. -M. Bollag (Eds.), Soil Biochemistry (vol. 7, pp. 307–404). New York: Marcel Dekker.Google Scholar
  36. Ruban, V. J., López-Sánchez, F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1, 51–56. doi:10.1039/a807778i.CrossRefGoogle Scholar
  37. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37, 1460–1482.Google Scholar
  38. Schwertmann, U., & Cornell, R. M. (2000). Iron Oxides in the Laboratory (2nd ed.). New York, NY: Wiley-VCH.Google Scholar
  39. Simon, N. S., Bricker, O. P., Newell, W., McCoy, R., & Morawe, R. (2005). The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin. Water, Air, and Soil Pollution, 164, 189–204. doi:10.1007/s11270-005-3024-5.CrossRefGoogle Scholar
  40. Spyridakis, D. E., & Welch, E. B.(1973) Nutrient budgets in the lakes of the Cedar River watershed. Internal report 85 in 1972 Annual Report. Coniferous Forest Biome, College of Forest Resources, University of Washington, Seattle, WA 98175, 19 pp.Google Scholar
  41. Torrent, J., Schwertmann, U., & Barron, V. (1992). Fast and slow phosphate sorption by goethite-rich natural materials. Clays and Clay Minerals, 40, 14–21. doi:10.1346/CCMN.1992.0400103.CrossRefGoogle Scholar
  42. Turner, B. L., Mahieu, N., & Condron, L. M. (2003). Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America Journal, 67, 497–510.Google Scholar
  43. Walker, W. W. (2001). Development of phosphorus TMDL for Upper Klamath Lake, Oregon, Report prepared for Oregon Department of Environmental Quality, Portland, OR, USA.Google Scholar
  44. Wood, T. M., Hoilman, G. R., & Lindenberg, M. K.(2006). Water-quality conditions in Upper Klamath Lake, Oregon, 2002–2004. U. S. Geological Survey Scientific Investigations Report 2006–5209.Google Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Nancy S. Simon
    • 1
  • Dennis Lynch
    • 2
  • Thomas N. Gallaher
    • 3
  1. 1.U.S. Geological Survey432 National Center studyRestonUSA
  2. 2.U.S. Geological Survey Oregon Water Science CenterPortlandUSA
  3. 3.Department of ChemistryJames Madison UniversityHarrisonburgUSA

Personalised recommendations