Advertisement

Water, Air, and Soil Pollution

, Volume 204, Issue 1–4, pp 117–131 | Cite as

Phosphine in the Lower Atmosphere of Qingdao—A Coastal Site of the Yellow Sea (China)

  • Jian-Bing Li
  • Gui-Ling ZhangEmail author
  • Jing Zhang
  • Su-Mei Liu
  • Jing-Ling Ren
  • Zhong-Xin Hou
Article

Abstract

Gaseous phosphine (PH3) in the inshore atmosphere was observed from October 2005 to August 2006 at a coastal site of the Yellow Sea in China. The concentration of PH3 ranged from 0.01 to 14.86 ng m−3 with an average of 1.14 ng m−3. The concentration showed a diurnal variation in PH3 with the peak occurring at morning and the lowest point at noon. An obvious seasonal variation of atmospheric PH3 was found, with the PH3 levels in the summer higher than those in the winter. The PH3 levels in the atmosphere were apparently affected by temperature, radiation, sources, and other meteorological factors. The data indicate that PH3 can be transported between the terrestrial and inshore atmosphere of Qingdao and the Yellow Sea or the East China Sea in both directions. The study increases evidence that PH3 participates within the global biogeochemical phosphorus cycle in P transport from land and inshore waters to the sea where commonly P is scarce and where PH3 inflow could be of important.

Keywords

Phosphine Diurnal variation Seasonal variation Yellow Sea Phosphorus transportation 

Notes

Acknowledgments

This study was supported by the National Science Foundation of China (grant no. 40506025) and the Ministry of Science and Technology of China (grant no. 2006CB400601). We also thank Drs. Shenhui Han and Lili Ding for their advice in determining PH3 and two reviewers for their comments and suggestions which greatly improved the manuscript. We are grateful to Ms. Janice Willson for her English language editorial work.

References

  1. Banks, H. J. (1994). Fumigation—an endangered technology? Proceedings of the 6th international working conference on stored-product protection, 1994, Canberra, Australia. Stored Product Protection (Volume 1) pp. 2–6. Wallingford, United Kingdom: CAB International.Google Scholar
  2. Barak, H., Michael, D. K., Gang, P., & Robert, M. (1999). Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact. Limnology and Oceanography, 44(7), 1683–1692.Google Scholar
  3. Bell, C. H. (2000). Fumigation in the 21st century. Crop Protection (Guildford, Surrey), 19, 563–569. doi: 10.1016/S0261-2194(00)00073-9.CrossRefGoogle Scholar
  4. Benitez-Nelson, C. R. (2000). The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews, 51, 109–135. doi: 10.1016/S0012-8252(00)00018-0.CrossRefGoogle Scholar
  5. Bethoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., & Ruiz-Pino, D. (1998). Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Marine Chemistry, 63(1–2), 155–169. doi: 10.1016/S0304-4203(98)00059-0.CrossRefGoogle Scholar
  6. Chang, Z., Wu, Z., & Gao, S. (2002). Numerical simulation: Three dimensional structure of sea and land breezes over Qingdao. Journal of the Ocean University of Qingdao, 32(6), 877–883 in Chinese.Google Scholar
  7. Chester, R. (2003). Marine Geochemistry. London: Blackwell Publishing.Google Scholar
  8. Chughtai, M., Pridham, J., Gates, P., & Cooke, M. (1998). Determination of phosphine by packed column gas chromatography with alkali flame ionization detection. Analytical Communications, 35, 109–111. doi: 10.1039/a801070f.CrossRefGoogle Scholar
  9. Devai, I., & Delaune, R. D. (1995). Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Organic Geochemistry, 23(3), 277–279. doi: 10.1016/0146-6380(95)00021-6.CrossRefGoogle Scholar
  10. Dévai, I., Felföldy, L., Wittner, I., & Plósz, S. (1988). Detection of phosphine: New aspects of the phosphorus cycle in the hydrosphere. Nature, 333(26), 343–345. doi: 10.1038/333343a0.CrossRefGoogle Scholar
  11. Dévai, I., DeLaune, R., Patrick, W., Dévai, G., & Czegeny, I. (1999). Phosphine production potential of various wastewater and sewage sludge sources. Analytical Letters, 32(7), 1447–1457. doi: 10.1080/00032719908542909.CrossRefGoogle Scholar
  12. Ding, L., Wang, X., Zhu, Y., Edwards, M., Glindemann, D., & Ren, H. (2005). Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere, 59, 49–54. doi: 10.1016/j.chemosphere.2004.10.015.CrossRefGoogle Scholar
  13. Draxler, R. R., & Rolph, G. D.(2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory, Silver Spring, MD. http://www.arl.noaa.gov/ready/hysplit4.html.
  14. Eismann, F., Glindemann, D., Bergmann, A., & Kuschk, P. (1997a). Balancing phosphine in manure fermentation. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 32(6), 955–968. doi: 10.1080/03601239709373122.Google Scholar
  15. Eismann, F., Glindemann, D., Bergmann, A., & Kuschk, P. (1997b). Effect of free phosphine on anaerobic digestion. Water Research, 31(11), 2771–2774. doi: 10.1016/S0043-1354(97)00144-9.CrossRefGoogle Scholar
  16. Eismann, F., Glindemann, D., Bergmann, A., & Kuschk, P. (1997c). Soils as source and sink of phosphine. Chemosphere, 35(3), 523–533. doi: 10.1016/S0045-6535(97)00117-3.CrossRefGoogle Scholar
  17. Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x.CrossRefGoogle Scholar
  18. Feng, Z., Song, X., & Yu, Z. (2008a). Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere, 73, 519–525. doi: 10.1016/j.chemosphere.2008.06.018.CrossRefGoogle Scholar
  19. Feng, Z., Song, X., & Yu, Z. (2008b). Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Marine Pollution Bulletin, 56, 1630–1636. doi: 10.1016/j.marpolbul.2008.05.017.CrossRefGoogle Scholar
  20. Frank, R., & Rippen, G. (1987). Verhalten von Phosphin in der Atmosphäre. Lebensmitteltechnik, 7-8, 409–411.Google Scholar
  21. Fritz, B., Lorenz, K., Steinert, W., & Zellner, R. (1982). Proceedings of the Second European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants, 1982, Dordrecht, Laboratory kinetic investigations of the tropospheric oxidation of selected industrial emissions. Holland: Reidel. pp. 192–202.Google Scholar
  22. Gassmann, G. (1994). Phosphine in the fluvial and marine hydrosphere. Marine Chemistry, 45, 197–205. doi: 10.1016/0304-4203(94)90003-5.CrossRefGoogle Scholar
  23. Gassmann, G., & Glindemann, D. (1993). Phosphane (PH3) in the biosphere. Angewandte Chemie International Edition in English, 32(55), 761–763. doi: 10.1002/anie.199307611.CrossRefGoogle Scholar
  24. Gassmann, G., & Schorn, E. (1993). Phosphine from harbor surface sediments. Naturwissenschaften, 80, 78–80. doi: 10.1007/BF01140420.CrossRefGoogle Scholar
  25. Gassmann, G., Beusekom, J. V., & Glindemann, D. (1996). Offshore atmospheric phosphine. Naturwissenschaften, 83, 129–131. doi: 10.1007/BF01142178.CrossRefGoogle Scholar
  26. Geng, J., Niu, X., Jin, X., Wang, X., Gu, X., Edwards, M., et al. (2005). Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry, 76, 283–298. doi: 10.1007/s10533-005-5422-6.CrossRefGoogle Scholar
  27. Glindemann, D., & Bergmann, A. (1995). Spontaneous emission of phosphane from animal slurry treatment processing. Zentralblatt fur Hygiene und Umweltmedizin, 198, 49–56.Google Scholar
  28. Glindemann, D., Bergmann, A., Stottmeister, U., & Gassmann, G. (1996a). Phosphine in the lower terrestrial troposphere. Naturwissenschaften, 83, 131–133. doi: 10.1007/BF01142179.CrossRefGoogle Scholar
  29. Glindemann, D., Morgenstern, P., Wennrich, R., Stottmeister, U., & Bergmann, A. (1996b). Toxic oxide deposits from the combustion of landfill gas and biogas. Environmental Science and Pollution Research, 3(2), 75–77. doi: 10.1007/BF02985493.CrossRefGoogle Scholar
  30. Glindemann, D., Stottmeister, U., & Bergmann, A. (1996c). Free phosphine from the anaerobic biosphere. Environmental Science and Pollution Research, 3(1), 17–19. doi: 10.1007/BF02986806.CrossRefGoogle Scholar
  31. Glindemann, D., Eismann, F., Bergmann, A., Kuschk, P., & Stottmeister, U. (1998). Phosphine by bio-corrosion of phosphide-rich iron. Environmental Science and Pollution Research, 5(2), 71–74. doi: 10.1007/BF02986389.CrossRefGoogle Scholar
  32. Glindemann, D., Edwards, M., & Kuschk, P. (2003). Phosphine gas in the upper troposphere. Atmospheric Environment, 37, 2429–2433. doi: 10.1016/S1352-2310(03)00202-4.CrossRefGoogle Scholar
  33. Glindemann, D., Edwards, M., & Schrems, O. (2004). Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmospheric Environment, 38, 6867–6874. doi: 10.1016/j.atmosenv.2004.09.002.CrossRefGoogle Scholar
  34. Glindemann, D., Edwards, M., JiAng, L., & Kuschk, P. (2005a). Phosphine in soils, sludges, biogases and atmospheric implications review. Ecological Engineering, 24, 457–463. doi: 10.1016/j.ecoleng.2005.01.002.CrossRefGoogle Scholar
  35. Glindemann, D., Edwards, M., & Morgenstern, P. (2005b). Phosphine from rocks: Mechanically driven phosphate reduction? Environmental Science & Technology, 39(21), 8295–8299. doi: 10.1021/es050682w.CrossRefGoogle Scholar
  36. Han, S., Zhuang, Y., Liu, J., & Glindemann, D. (2000). Phosphorus cycling through phosphine in paddy fields. The Science of the Total Environment, 258, 195–203. doi: 10.1016/S0048-9697(00)00570-2.CrossRefGoogle Scholar
  37. Han, S., Wang, Z., Zhuang, Y., Yu, Z., & Glindemann, D. (2003). Phosphine in various matrixes. Journal of Environmental Sciences (China), 15(3), 339–341.Google Scholar
  38. Iverson, W. (1968). Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature, 217, 1265–1267. doi: 10.1038/2171265a0.CrossRefGoogle Scholar
  39. Iverson, W. (1999). Anaerobic corrosion: metals and microbes in two worlds. Journal of Industrial Microbiology & Biotechnology, 22, 288–297. doi: 10.1038/sj.jim.2900641.CrossRefGoogle Scholar
  40. Jenkins, R., Morris, T., Craig, P., Ritchie, A., & Ostah, N. (2000). Phosphine generation by mixed- and monoseptic-cultures of anaerobic bacteria. The Science of the Total Environment, 250, 73–81. doi: 10.1016/S0048-9697(00)00368-5.CrossRefGoogle Scholar
  41. Jickells, T. (1995). Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects. Marine Chemistry, 48(3-4), 199–214. doi: 10.1016/0304-4203(95)92784-P.CrossRefGoogle Scholar
  42. Karl, D. M., Björkman, K. M., Dore, J. E., Fujieki, L., Hebel, D. V., Houlihan, T., et al. (2001). Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-sea Research. Part II, Topical Studies in Oceanography, 48(8-9), 1529–1566. doi: 10.1016/S0967-0645(00)00152-1.CrossRefGoogle Scholar
  43. Lin, R., Yoon, W. D., Wu, J., & a, L. (2002). The N/P Ratio in the Northern South Yellow Sea in Autumn. Chinese Journal of Oceanology and Limnology, 20, 384–388. doi: 10.1007/BF02847931.CrossRefGoogle Scholar
  44. Liu, J., Cao, H., Zhuang, Y., Kuschk, P., Eismann, F., & Glindemann, D. (1999). Phosphine in the urban air of Beijing and its possible sources. Water, Air, and Soil Pollution, 116(33), 597–604.Google Scholar
  45. Morton, S. C., & Edwards, M. (2005). Reduced phosphorus compounds in the environment. Critical Reviews in Environmental Science and Technology, 35(4), 333–364. doi: 10.1080/10643380590944978.CrossRefGoogle Scholar
  46. Morton, S. C., Glindemann, D., Wang, X., Niu, X., & Edwards, M. A. (2005). Analysis of reduced phosphorus in samples of environmental interest. Environmental Science & Technology, 39(12), 4369–4376. doi: 10.1021/es0401038.CrossRefGoogle Scholar
  47. Niu, X., Geng, J., Wang, X., Wang, C., Gu, X., Edwards, M., et al. (2004). Temporal and spatial distributions of phosphine in Taihu Lake, China. The Science of the Total Environment, 323, 169–178. doi: 10.1016/j.scitotenv.2003.10.017.CrossRefGoogle Scholar
  48. Odom, J. D., & Zozulin, A. J. (1981). The reaction of nitric oxide with phosphine and several difluorophosphine molecules. Phosphorus, Sulfur, and Silicon and the Related Elements, 9, 299–305. doi: 10.1080/03086648108078254.CrossRefGoogle Scholar
  49. Roels, J., & Verstraete, W. (2001). Biological formation of volatile phosphorus compounds. Bioresource Technology, 79, 243–250. doi: 10.1016/S0960-8524(01)00032-3.CrossRefGoogle Scholar
  50. Roels, J., & Verstraete, W. (2004). Occurrence and origin of phosphine in landfill gas. The Science of the Total Environment, 327, 185–196. doi: 10.1016/j.scitotenv.2003.11.016.CrossRefGoogle Scholar
  51. Roels, J., Langenhove, H. V., & Verstraete, W. (2002). Determination of phosphine in biogas and sludge at ppt-levels with gas chromatography-thermionic specific detection. Journal of Chromatography. A, 952, 229–237. doi: 10.1016/S0021-9673(02)00084-5.CrossRefGoogle Scholar
  52. Roels, J., Huyghe, G., & Verstraete, W. (2005). Microbially mediated phosphine emission. The Science of the Total Environment, 338, 253–265. doi: 10.1016/j.scitotenv.2004.07.016.CrossRefGoogle Scholar
  53. Sheng, L., Fu, Y., Qiu, M., & Gao, H. (2005). The seasonal variabilities in the concentration of atmospheric aerosols over Qingdao, China. Journal of Ocean University of China, 4, 383–390. doi: 10.1007/s11802-005-0060-0.CrossRefGoogle Scholar
  54. Stephanie, J. G., & Robert, E. H. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223.Google Scholar
  55. Sundareshwar, P. V., Morris, J. T., Koepfler, E. K., & Fornwalt, B. (2003). Phosphorus limitation of coastal ecosystem processes. Science, 299(5606), 563–565. doi: 10.1126/science.1079100.CrossRefGoogle Scholar
  56. Tamar, Z., & Richard, D. R. (1998). Experimental study of microbial p limitation in the Eastern Mediterranean. Limnology and Oceanography, 43(3), 387–395.CrossRefGoogle Scholar
  57. Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut, B., et al. (2005). Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science, 309(5737), 1068–1071. doi: 10.1126/science.1112632.CrossRefGoogle Scholar
  58. Wang, B., & Tu, J. (2005). Biogeochemistry of nutrient elements in the Changjiang (Yangtze River) Estuary. Marine Science Bulletin, 7(2), 72–79 Chinese Journal.Google Scholar
  59. Wang, B., Wang, X., & Zhan, R. (2003). Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58, 127–136. doi: 10.1016/S0272-7714(03)00067-2.CrossRefGoogle Scholar
  60. WHO.(1988). Environmental Health Criteria 73, Phosphine and selected metalphosphides, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc73.htm.
  61. Withnall, R., & Andrews, L. (1988). Infrared spectra of O-atom-PH3 reaction products trapped in solid argon. Journal of Physical Chemistry, 92, 4610–4619. doi: 10.1021/j100327a012.CrossRefGoogle Scholar
  62. Yu, Z., & Song, X. (2003). Matrix-bound phosphine: A new form of phosphorus found in sediment of Jiaozhou Bay. Chinese Science Bulletin, 48(1), 31–35. doi: 10.1360/03tb9006.CrossRefGoogle Scholar
  63. Zhang, G., Zhang, J., & Liu, S. (2007). Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over the Yellow Sea and East China Sea. Journal of Atmospheric Chemistry, 57(1), 41–57. doi: 10.1007/s10874-007-9060-3.CrossRefGoogle Scholar
  64. Zhu, R., Sun, L., Kong, D., Geng, J., Wang, N., Wang, Q., et al. (2006). Matrix-bound phosphine in Antarctic biosphere. Chemosphere, 64(8), 1429–1435. doi: 10.1016/j.chemosphere.2005.12.031.CrossRefGoogle Scholar
  65. Zhu, R., Glindemann, D., Kong, D., Sun, L., Geng, J., & Wang, X. (2007). Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmospheric Environment, 41, 1567–1573. doi: 10.1016/j.atmosenv.2006.10.035.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jian-Bing Li
    • 1
  • Gui-Ling Zhang
    • 1
    Email author
  • Jing Zhang
    • 2
  • Su-Mei Liu
    • 1
  • Jing-Ling Ren
    • 1
  • Zhong-Xin Hou
    • 3
  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education of China, Department of Marine Chemistry, College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoChina
  2. 2.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina
  3. 3.Qingdao Meteorological BureauQingdaoChina

Personalised recommendations