Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA

Abstract

Impairment of water quality is a major concern for streams and rivers in the central USA. Total maximum daily loads (TMDLs) establish a watershed framework and set management targets to alleviate pollution from both point and nonpoint sources. For this study, we have used a hydrologic modeling approach to holistically examine the effect of land use management, urban development, and agricultural practices on sediment and nutrient loadings in an agricultural watershed. Annualized Agricultural Nonpoint Source (AnnAGNPS) simulation indicates that while point source dischargers contribute 8% of total nitrogen (TN) and 24% of total phosphorus (TP) loadings to the Marmaton River, agricultural nonpoint sources are the leading pollution source contributing 55% of TN and 49% of TP loading. Based on TMDL analysis and model simulation, 3% of the watershed area (3,244 ha) needs to be targeted to control TN loading whereas 1% of the total area (1,319 ha) is required for TP reduction management. Managing the TN areas alone can achieve a 57% reduction in the TP load required for the TMDL, whereas managing the targeted TP areas can only provide 30% of the required TN reduction. Areas required both TN and TP management comprise 469 ha. Targeting these areas can achieve approximately 22% of the required TN reduction and 29% of the required TP reduction. Overall, 4,094 ha will require management to achieve water quality goals. This study demonstrates that a modeling approach is needed to effectively address TMDL issues and help identify targeted areas for management.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Andreen, W. L. (2004). Water quality today—has the clean water act been a success? Alabama Law Review, 55, 537–593.

  2. Arruda, J.A. (1993). Bourbon County small lakes modeling project. Final report to the Kansas Department of Health and Environment, Pittsburg State University. 30 pp.

  3. Benaman, J., Ward, G. H., Maidment, D. R., & Sauders, W. K. (2000). A critical assessment of water quality and watershed models for the Texas total maximum daily load process. In Proceedings of the Water Environment Federation, Watershed 2000 (pp. 785–812).

  4. Benham, B., Zeckoski, R., Yagow, G., & Ekka, S. (2006). TMDL implementation–Characteristics of successful projects. Center for TMDL and Watershed Studies, Virginia Tech, Blacksburg, VA. VT-BSE Document No 2006-0003. 370 pp.

  5. Bennett, E. M., Carpenter, S. R., & Caraco, N. E. (2001). Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience, 51(3), 227–234. doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2.

  6. Bilotta, G. S., Brazier, R. E., Haygarth, P. M., Macleod, C. J. A., Butler, P., Granger, S., et al. (2008). Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. Journal of Environmental Quality, 37, 906–914. doi:10.2134/jeq2007.0457.

  7. Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., et al. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental Health Perspectives, 115, 308–312.

  8. Bingner, R. L., Theurer, F. D., & Yuan, Y. (2007). AnnAGNPS technical processes. Model version 4.0. USDA-ARS. Oxford, MS: National Sedimentation Laboratory.

  9. Borah, D. K., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint source pollution models: Review of mathematical bases. Transactions of the ASAE. American Society of Agricultural Engineers, 46(3), 1553–1566.

  10. Bosch, D., Theurer, F. D., Bingner, R. L., Felton, G., & Chaubey, I. (1998). Evaluation of the AnnAGNPS water quality model. ASAE paper no. 98-2195. St. Joseph, Michigan.

  11. Boyd, J. (2000). Unleashing the clean water act: The promise and challenge of the TMDL approach to water quality. Resources, 139, 7–10.

  12. Carpenter, S. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002–10005. doi:10.1073/pnas.0503959102.

  13. Carpenter, S., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. J. Ecological Applications, 3, 559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.

  14. Chapman, S. S., Omernik, J. M., Freeouf, J. A., Huggins, D. G., McCauley, J. R., & Freeman, C. C. (2001). Ecoregions of Nebraska and Kansas. Reston, Virginia: U.S. Geological Survey.

  15. Das, S., Rudra, R. P., Gharabaghi, B., Goel, P. K., Singh, A., & Ahmed, I. (2007). Comparing the performance of SWAT and AnnAGNPS model in a watershed in Ontario. In Proceedings of the ASABE fourth conference on watershed management to meet water quality standards and TMDLs. Publication no: 701P0207. San Antonio, Texas. March 10–14, 2007.

  16. Das, S., Rudra, R. P., Gharabaghi, B., Gebremeskel, S., Goel, P. K., & Dickinson, W. T. (2008). Applicability of AnnAGNPS for Ontario conditions. Canadian Biosystems Engineering, 50, 1.1–1.11.

  17. Dodds, W. K., & Oakes, R. M. (2008). Headwater influences on downstream water quality. Environmental Management, 41(3), 367–377. doi:10.1007/s00267-007-9033-y.

  18. Donigian, A. S. Jr. (2002). Watershed model calibration and validation: The HSPF experience. In Proceedings of the WEF National TMDL Science and Policy Conference, Phoenix, AZ. November 13–16, 2002.

  19. Emmert, B., & Hase, K. (2001). Geographic assessment and classification of Kansas riparian systems (p. 166). Topeka, KS: KWO.

  20. Evans, B. M., Lehning, D. W., Corradini, K. J., Petersen, G. W., Nizeyimana, E., Hamlett, J. M., et al. (2002). A comprehensive GIS-based modeling approach for predicting nutrient loads in watersheds. Journal of Spatial Hydrology, 2(2), 1–18.

  21. Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, application, and future research directions. Transactions of the ASAE. American Society of Agricultural Engineers, 50(4), 1211–1250.

  22. Gordon, L. M., Bennett, S. J., Bingner, R. L., Theurer, F. D., & Alonso, C. V. (2007). Simulating ephemeral gully erosion in AnnAGNPS. Transactions of the ASAE. American Society of Agricultural Engineers, 50(3), 857–866.

  23. Heimann, D. C., Licher, S. S., & Schalk, G. K. (2007). Effects of impoundments and land-cover changes on streamflows and selected fish habitat in the Upper Osage River Basin, Missouri and Kansas. U.S. Geological Survey, Scientific Investigation Report 2007-5175. 96 p. plus CD.

  24. Kansas Department of Health and Environment (KDHE) (2001a). Marais des Cygnes Basin TMDL: Marmaton River—water quality impairment: Nutrients and oxygen demand impact on aquatic life (p. 20). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

  25. Kansas Department of Health and Environment (KDHE) (2001b). Marais des Cygnes Basin TMDL: Marmaton River—water quality impairment: Dissolved oxygen (p. 18). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

  26. Kansas Department of Health and Environment (KDHE) (2008). Marais des Cygnes Basin Lake Protection Plan: Cedar Creek Lake—water quality issue: Eutrophication (p. 32). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

  27. Kansas Water Office (KWO) (2003). Kansas water plan: Marais des Cygnes Basin Section (p. 21). Topeka, KS: KWO.

  28. Mankin, K. R., & Kalita, P. K. (2000). Horseshoe Creek watershed water quality assessment. Final report. KDHE contract NPS 97-149, Bureau of Water, KDHE, Topeka, KS.

  29. Mankin, K. R., & Koelliker, J. K. (2001). Clinton Lake water quality assessment project. Final Report. KDHE contract NPS 98-059, Bureau of Water, KDHE. Topeka, KS.

  30. Mankin, K. R., Wang, S. H., Koelliker, J. K., Huggins, D. G., & deNoyelles, F. Jr. (2003). Watershed-lake quality modeling: verification and application. Journal of Soil and Water Conservation, 58(4), 188–197.

  31. Mankin, K. R., Tuppad, P., Devlin, D. L., & McVay, K. A. (2005). Strategic targeting of watershed management using water quality modeling. Transactions on Ecology and the Environment, 83, 327–337.

  32. McKenzie, C. M. (2006). Making an impact: The watershed approach. Small Flows Quarterly, 7(Fall Issue), 11–16.

  33. Meals, D. W., Cassell, E. A., Hughell, D., Wood, L., & Jokela, W. E. (2008). Dynamic spatially explicit mass-balances modeling for targeted watershed phosphorus management: II Modeling application. Agriculture Ecosystems & Environment, 127(3–4), 223–233. doi:10.1016/j.agee.2008.04.005.

  34. Missouri Department of Conservation (MDC) (2008). West Osage Watershed. Information available on Web, access in September, 2008, at http://mdc.mo.gov/fish/watershed/wosage/hydro/.

  35. Mitsch, W. J., & Gosselink, J. G. (2000). The values of wetlands: importance of scale and landscape setting. Ecological Economics, 35(1), 25–33. doi:10.1016/S0921-8009(00)00165-8.

  36. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASAE. American Society of Agricultural Engineers, 50(3), 885–900.

  37. National Research Council (NRC) (2001). Assessing the TMDL approach to water quality management (p. 122). Washington, DC: The National Academies.

  38. Natural Resources Conservation Service (NRCS) (1986). TR-55: Urban hydrology for small watersheds. Washington, DC: USDA, NRCS.

  39. Nejadhashemi, A. P., & Mankin, K. R. (2007). Comparison of four water quality models (STEPL, PLOAD, L-THIA, and AVSWAT-X) in simulating sediment and nutrient dynamics in a watershed. Minneapolis, MN: ASABE Annual International Meeting. Paper no: 072211. June 17–20.

  40. Parsons, J., Thomas, D. L., & Huffman, R. L. (2004). Agricultural nonpoint source water quality models: Their use and application (p. 195). Raleigh, NC: North Carolina State University, Southern Cooperative Series Bulletin no. 398.

  41. Polyakov, V., Fares, A., Kubo, D., Jacobi, J., & Smith, C. (2007). Evaluation of a nonpoint source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling & Software, 22(11), 1617–1627. doi:10.1016/j.envsoft.2006.12.001.

  42. Santhi, C., Srinivasan, R., Arnold, J. G., & Williams, J. R. (2006). A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, 21(8), 1141–1157. doi:10.1016/j.envsoft.2005.05.013.

  43. Selman, M., Greenhalgh, S., Diaz, R., & Sugg, Z. Z. (2008). Eutrophication and hypoxia in coastal areas: A global assessment of the state of knowledge (p. 6). Washington, DC: Water Resources Institute.

  44. Sharpley, A. N., Daniel, T., Sims, T., Lemunyon, J., Stevens, R., & Parry, R. (2003). Agricultural phosphorus and eutrophication (2nd ed., p. 44). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service, Publication no. ARS-149.

  45. Shoemaker, L., Dai, T., & Koenig, J. (2005). TMDL model evaluation and research needs. EPA-600-R-05-149. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, USEPA.

  46. Shrestha, S., Babel, M. S., Das Gupta, A., & Kazama, F. (2006). Evaluation of annualized agricultural nonpoint source pollution model for a watershed in the Siwalik Hills of Nepal. Environmental Modelling & Software, 21(7), 961–975. doi:10.1016/j.envsoft.2005.04.007.

  47. Skei, J., Larsson, P., Rosenberg, R., Jonsson, P., Olsson, M., & Broman, D. (2000). Eutrophication and contaminants in aquatic ecosystems. Ambio, 29(4), 184–194. doi:10.1639/0044-7447(2000)029[0184:EACIAE]2.0.CO;2.

  48. Smith, V. H. (2003). Eutrophication of freshwater and marine ecosystems: A global problem. Environmental Science and Pollution Research, 10(2), 126–139. doi:10.1065/espr2002.12.142.

  49. Sloto, R.A., & Crouse, M.Y. (1996). HYSEP—a computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey Water-Resources Investigations report 96-4040. 46 pp.

  50. Udawatta, R. P., Motavalli, P. P., & Garrett, H. E. (2004). Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. Journal of Environmental Quality, 33, 1709–1719.

  51. U.S. Environmental Protection Agency (USEPA) (1991). Guidance for water quality-based decisions: The TMDL process. EPA-440-4-91-001. Washington, DC: Water of Office, USEPA.

  52. U.S. Environmental Protection Agency (USEPA) (1996). Nonpoint source pollution: The nation’s largest water quality problem. EPA-841-F-96-004A. Washington, DC: Water of Office, USEPA.

  53. U.S. Environmental Protection Agency (USEPA) (1997). Compendium of tools for watershed assessment and TMDL development. EPA-841-B-97-006. Washington DC: Water of Office, USEPA.

  54. U.S. Environmental Protection Agency (USEPA) (1999). Protocol for developing nutrient TMDLs. EPA-841-B-99-007. Washington DC: Water of Office, USEPA.

  55. U.S. Environmental Protection Agency (USEPA) (2003). Evaluation of sediment transport models and comparative application of two watershed models. EPA-600-R-03-139. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, USEPA.

  56. U.S. Environmental Protection Agency (USEPA) (2007a). National water quality inventory: 2002 report. EPA-841-R-07-001. Washington, DC: Water of Office, USEPA.

  57. U.S. Environmental Protection Agency (USEPA) (2007b). An approach for using load duration curves in the development of TMDLs. EPA-841-B-07-006. Washington, DC: Water of Office, USEPA.

  58. U.S. Environmental Protection Agency (USEPA) (2008). Handbook for developing watershed plans to restore and protect our waters. EPA-841-B-08-002. Washington, DC: Water of Office, USEPA.

  59. Vasconcelos, J. T., Tedeschi, L. O., Fox, D. G., Galyean, M. L., & Greene, L. W. (2007). Review: Feeding nitrogen and phosphorus in beef cattle feedlot production to mitigate environmental impacts. The Professional Animal Scientist, 23, 8–17.

  60. Wang, S. H., Huggins, D. G., Frees, L., Volkman, C. G., Lim, N. C., Baker, D. S., et al. (2005). An integrated modeling approach to total watershed management: water quality and watershed management of Cheney Reservoir, Kansas, USA. Water, Air, and Soil Pollution, 164(1–4), 1–19. doi:10.1007/s11270-005-1658-y.

  61. Yuan, Y., Bingner, R. L., & Rebich, R. A. (2001). Evaluation of AnnAGNPS on Mississippi Delta MSEA watersheds. Transactions of the ASAE. American Society of Agricultural Engineers, 44(5), 1183–1190.

  62. Yuan, Y., Bingner, R. L., & Boydstun, J. (2006). Development of TMDL watershed implementation plan using annualized ANGPS. Land Use and Water Resources Research, 6, 2.1–2.8.

Download references

Acknowledgments

The work described in this study was part of a broader TMDL effort for the Marais des Cygnes Basin. We gratefully acknowledge contributions made by field crews and technical staff from the Bureau of Environmental Field Services, KDHE, particularly as related to water quality monitoring, data support, and quality control and assurance of water quality data. We also thank Drs. Fred Theurer and Xingong Li for their technical assistance and valuable modeling suggestions. In addition, we appreciate helpful comments from two anonymous reviewers, which have greatly improved the quality of this manuscript.

Author information

Correspondence to Steven Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S., Stiles, T., Flynn, T. et al. A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA. Water Air Soil Pollut 203, 193–206 (2009). https://doi.org/10.1007/s11270-009-0003-2

Download citation

Keywords

  • Watershed
  • Modeling
  • AnnAGNPS
  • TMDL
  • Water quality
  • Management