Water, Air, and Soil Pollution

, Volume 202, Issue 1–4, pp 131–140 | Cite as

A Study of Diffusive Gradients in Thin Films for the Chemical Speciation of Zn(II), Cd(II), Pb(II), and Cu(II): The Role of Kinetics

  • Ibraheem Gaabass
  • John D. Murimboh
  • Nouri M. Hassan


The lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes were studied using diffusive gradients in thin films (DGT). A unique feature of this research was (1) the use of DGTs with diffusive layer thicknesses ranging from 0.4 to 2.0 mm to study lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes, combined with (2) the application of a competing ligand exchange (CLE) method using Chelex 100, the same chelating resin that is used in DGT, to study the kinetic speciation. The CLE experiments were run immediately after the completion of the DGT experiments, thereby allowing effects of the competing ligand to be separated from the effects introduced by the use of the polyacrylamide gel that is used in DGT. The results indicate that Zn(II) and Cd(II) tend to form more labile and more mobile complexes with humic acid than Pb(II) or Cu(II). The dissociation rate constants of Zn(II), Cd(II), and Pb(II) were found to increase with the ionic potential of the metal, suggesting that the binding between some trace metals and humic acid has a significant covalent component. Furthermore, the results suggest that the Eigen mechanism may not be strictly obeyed for metals such as Cu(II) which have high rate constants of water exchange, k w. Consequently, the markedly slow kinetics of Cu(II)-HA species suggests that the usual equilibrium assumption may not be valid in freshwaters.


Diffusive gradients in thin films Competing ligand exchange Chelex 100 Trace metals Chemical speciation Humic acid 



J.M. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for a research grant. The authors also thank Dr. Stephen Duffy (Mount Allison University) for providing the humic acid and Gary Fisher and Dr. Colin Cameron (Defence Research and Development Canada Halifax) for providing ICP-MS time.


  1. Anderson, M. A., Morel, F. M. M., & Guillard, R. R. L. (1978). Growth limitation of a coastal diatom by low zinc ion activity. Nature, 276, 70–71. doi: 10.1038/276070a0.CrossRefGoogle Scholar
  2. Buffle, J. (1988). Complexation Reactions in Aquatic Systems: An Analytical Approach. New York: Ellis Horwood.Google Scholar
  3. Buffle, J., Altmann, R. S., Filella, M., & Tessier, A. (1990). Complexation by natural heterogeneous compounds. II. Site occupation distribution functions, a normalized description of metal complexation. Geochimica et Cosmochimica Acta, 54(6), 1535–1553. doi: 10.1016/0016-7037(90)90389-3.CrossRefGoogle Scholar
  4. Buffle, J., Zhang, Z., & Startchev, K. (2007). Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environmental Science & Technology, 41(22), 7609–7620. doi: 10.1021/es070702p.CrossRefGoogle Scholar
  5. Butler, I. S., & Harrod, J. F. (1989). Inorganic chemistry: Principles and applications (pp. 421–422). Redwood City, CA: Benjamin/Cummings.Google Scholar
  6. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). Chichester, UK: Wiley.Google Scholar
  7. DiToro, D. N., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 20(10), 2383–2396. doi: 10.1897/1551-5028(2001)020<2383:BLMOTA>2.0.CO;2.CrossRefGoogle Scholar
  8. Fasfous, I. I., Yapici, T., Murimboh, J., Hassan, N. M., Chakrabarti, C. L., Back, M. H., et al. (2004). Kinetics of trace metal competition in the freshwater environment: Some characteristic features. Environmental Science & Technology, 38(19), 4979–4986. doi: 10.1021/es035427v.CrossRefGoogle Scholar
  9. Filella, M., Buffle, J., & van Leeuwen, H. P. (1990). Effect of physico-chemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal-fulvic acid complexes. Analytica Chimica Acta, 232, 209–223. doi: 10.1016/S0003-2670(00)81236-2.CrossRefGoogle Scholar
  10. Galceran, J., & van Leeuwen, H. P. (2004). Dynamics of biouptake processes: The role of transport, adsorption and internalisation. In H. P. van Leeuwen & W. Köster (Eds.), Physicochemical kinetics and transport at biointerfaces, Vol. 9, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (pp. 147–203). Chichester, UK: Wiley.CrossRefGoogle Scholar
  11. Jansen, S., Blust, R., & van Leeuwen, H. P. (2002). Metal speciation dynamics and bioavailability: Zn(II) and Cd(II) uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio). Environmental Science & Technology, 36(10), 2164–2170. doi: 10.1021/es010219t.CrossRefGoogle Scholar
  12. Li, W., Zhao, H., Teasdale, P. R., John, R., & Wang, F. (2005). Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. Analytica Chimica Acta, 533, 192–202. doi: 10.1016/j.aca.2004.11.019.CrossRefGoogle Scholar
  13. Langford, C. H., & Melton, J. R. (2005). When should humic substances be treated as dynamic combinatorial systems? In E. A. Ghabbour & G. Davies (Eds.), Humic substances (pp. 65–78). New York: Taylor & Francis.Google Scholar
  14. Morel, F. M. M., & Hering, J. G. (1993). Principles and applications of aquatic chemistry. New York: Wiley.Google Scholar
  15. Price, N. M., Harrison, G. I., Hering, J. G., Hudson, R. J., Nirel, P. M. V., & Morel, F. M. M. (1988/1989). Preparation and chemistry of the artificial algal culture medium aquil. Biological Oceanography, 6, 443–461.Google Scholar
  16. Scally, S., Davison, W., & Zhang, H. (2003). In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT. Environmental Science & Technology, 37(7), 1379–1384. doi: 10.1021/es0202006.CrossRefGoogle Scholar
  17. Sekaly, A. L., Murimboh, J., Hassan, N. M., Mandal, R., Ben Younes, M. E., Chakrabarti, C. L., et al. (2003). Kinetic speciation of Co(II), Ni(II), Cu(II) and Zn(II) in model solutions and freshwaters: Lability and the d electron configuration. Environmental Science & Technology, 37(1), 68–74. doi: 10.1021/es025805g.CrossRefGoogle Scholar
  18. Sigg, L., Black, F., Buffle, J., Cao, J., Cleven, R., & Davison, W. (2006). Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environmental Science & Technology, 40(6), 1934–1941. doi: 10.1021/es051245k.CrossRefGoogle Scholar
  19. Tercier, M.-L., & Buffle, J. (1993). In situ voltammetric measurements in natural waters: Future prospects and challenges. Electroanalysis, 5(3), 187–200. doi: 10.1002/elan.1140050303.CrossRefGoogle Scholar
  20. Tipping, E. (2002). Cation Binding by Humic Substances. Cambridge, UK: Cambridge University Press.Google Scholar
  21. Town, R. M., & Filella, M. (2000). Dispelling the myths: Is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters? Limnology and Oceanography, 45(6), 1341–1357.CrossRefGoogle Scholar
  22. van Leeuwen, H. P. (1999). Metal speciation dynamics and bioavailability: Inert and labile complexes. Environmental Science and Technology, 33(21), 3743–3748. doi: 10.1021/es990362a.CrossRefGoogle Scholar
  23. van Leeuwen, H. P. (2000). Dynamic aspects of in situ speciation processes and techniques. In J. Buffle & G. Horvai (Eds.), In situ monitoring of aquatic systems: Chemical analysis and speciation (pp. 253–277). New York: Wiley.Google Scholar
  24. van Leeuwen, H. P., Town, R. M., Buffle, J., Cleven, R. F. M. J., Davison, W., Puy, J., et al. (2005). Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environmental Science & Technology, 39(22), 8545–8556. doi: 10.1021/es050404x.CrossRefGoogle Scholar
  25. Warnken, K. W., Davison, W., Zhang, H., Galceran, J., & Puy, J. (2007). In situ measurements of metal complex exchange kinetics in freshwater. Environmental Science & Technology, 41(9), 3179–3185. doi: 10.1021/es062474p.CrossRefGoogle Scholar
  26. Wilkins, R. C. (1991). Kinetics and mechanism of reactions of transition metal complexes (2nd ed.). New York: VCH.Google Scholar
  27. Xue, H. B., Jansen, S., Prasch, A., & Sigg, L. (2001). Nickel speciation and complexation in freshwater by ligand exchange and DPCSV. Environmental Science & Technology, 35(3), 539–546. doi: 10.1021/es0014638.CrossRefGoogle Scholar
  28. Zhang, H. (2003). DGT—For measurements in waters, soils and sediments. Lancaster, UK: DGT Research.Google Scholar
  29. Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin films for in situ measurement of trace metals in aqueous solution. Analytical Chemistry, 67(19), 3391–3400. doi: 10.1021/ac00115a005.CrossRefGoogle Scholar
  30. Zhang, H., & Davison, W. (2000). Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Analytical Chemistry, 72(18), 4447–4457. doi: 10.1021/ac0004097.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ibraheem Gaabass
    • 1
  • John D. Murimboh
    • 1
  • Nouri M. Hassan
    • 2
  1. 1.Department of ChemistryAcadia UniversityWolfvilleCanada
  2. 2.Worsfold Water Quality CentreTrent UniversityPeterboroughCanada

Personalised recommendations