Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lead Pollution of Floodplain Soils in a Historic Mining Area—Age, Distribution and Binding Forms

  • 404 Accesses

  • 19 Citations

Abstract

Historic lead mining, milling and smelting on the floodplain soils of the upper reaches of the Vils River, Eastern Bavaria, Germany has led to heavy metal contamination within the younger floodplain sediments downstream. This study aims to date the lead pollution and possible primary sources, display and quantify its spatial distribution within the Vils River floodplain in accordance to soil horizons and characterise the binding forms of lead. One hundred fifty profiles were sampled to detect total contents of heavy metals. Sequential extractions were carried out to determine the binding forms; thus, the potential of lead mobility was characterised. The contamination of the floodplain soils act as an alluvial archive, providing a stratigraphical indicator of mining activities and related sedimentation. The age of the sediments displaying the initial lead peak in the alluvial loams corresponds with sediment accumulations at the onset of the mining period and its first phase of prosperity in the sixteenth century. Enrichments of lead in the oxidic gleysols revealed that dissolved fractions of lead precipitate in the groundwater table fluctuation zone. The sequential extraction proved that lead mobility increases in the psammic and hypersceletic fluvial horizons below the flood loams due to the modest salt contents of the extractants and low pH given in these layers. Thus, the risk of the particulate transport of lead has to be extended to include the danger of potential lead solubility in ground and surface waters. Further, the polluted alluvial sediments also act as a source of contamination, leading to the grave danger of the further pollution of so far uncontaminated areas downstream, especially if the reworking and dredging of the material is allowed to occur.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allan, R. (1997). Mining and metals in the environment. Journal of Geochemical Exploration, 58, 95–100. doi:10.1016/S0375-6742(97)00004-6.

  2. Alloway, B. J. (1995). Heavy metals in soils. Berlin: Springer.

  3. BayGLA (1999). Bodenschutz in Bayern. Hintergrundwerte anorganischer Schadstoffe in den Böden Bayerns. München: Bayerisches Geologisches Landesamt Retrieved March 1, 2007, from www.lfu.bayern.de/boden/fachinformationen/hintergrundwerte/doc/hintergrundwert_flyer.pdf.

  4. BBodSchV (1999). Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999. Bundesgesetzblatt. Teil, I(36), 1554–1582 (Bonn).

  5. Beckmann, S. (2006). Kolluvien und Auensedimente als Geoarchive im Umfeld der historischen Hammerwerke Leidersdorf und Wolfsbach (Vils/Opf.). Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 12. Retrieved July 4, 2007 from http://www.opus-bayern.de/uni-regensburg/frontdoor.php?source_opus=752&la=de.

  6. Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., et al. (2003). The solid state partitioning of contaminant metals and as in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. doi:10.1016/S0883-2927(03)00078-7.

  7. Ad hoc Boden, A. G. (2005). Bodenkundliche Kartieranleitung. Hannover: Schweizerbart.

  8. Brown, A. G. (1997). Alluvial geoarchaeology—Floodplain archaeology and environmental change. Cambridge: Cambridge Manuals in Archaeology.

  9. Ciszewski, D. (2003). Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water, Air, and Soil Pollution, 143, 81–98. doi:10.1023/A:1022825103974.

  10. Ciszewski, D., Malik, I., & Szwarczewski, P. (2004). Pollution of the Mala Panew River sediments by heavy metals: Part II. Effect of changes in river valley morphology. Polish Journal of Environmental Studies, 13, 597–605.

  11. Craddock, P. T. (1995). Early metal mining and production. Edinburgh: Smithsonian Institution Press.

  12. Craddock, P. T., & Lang, J. (Eds.) (2003). Mining and metal production through the ages. London: British Museum Press.

  13. Dawson, E. J., & Macklin, M. G. (1998). Speciation of heavy metals on suspended sediment under high flow conditions in the River Aire, West Yorkshire, UK. Hydrological Processes, 12, 1483–1494. doi:10.1002/(SICI)1099-1085(199807)12:9<1483::AID-HYP651>3.0.CO;2-W.

  14. Dennis, I., Macklin, M. G., Coulthard, T. J., & Brewer, P. A. (2003). The impact of the October–November 2000 floods on contaminant metal dispersal in the River Swales catchment, North Yorkshire, UK. Hydrological Processes, 17, 1641–1657. doi:10.1002/hyp.1206.

  15. Durn, G., Miko, S., Covic, M., Barudzija, U., Tadej, N., Namjesnik-Dejanovic, K., et al. (1999). Distribution and behaviour of selected elements in soil developed over a historical Pb–Ag mining site at Sv. Jakob, Croatia. Journal of Geochemical Exploration, 67, 361–376. doi:10.1016/S0375-6742(99)00064-3.

  16. Gäbler, H. E. (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58, 185–194. doi:10.1016/S0375-6742(96)00061-1.

  17. Gäbler, H. E., & Schneider, J. (2000). Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39, 774–782. doi:10.1007/s002540050493.

  18. Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon Rivers. Geological Society of America Bulletin, 88, 829–843. doi:10.1130/0016-7606(1977)88<829:TPOTMI>2.0.CO;2.

  19. Hasel, K., & Schwartz, E. (2002). Forstgeschichte. Ein Grundriss für Studium und Praxis. Remagen: Kessel.

  20. Hindel, R., Schalich, J., De Vos, W., Ebbing, J., Swennen, R., & Van Keer, I. (1996). Vertical distribution of elements in overbank sediment profiles from Belgium, Germany and The Netherlands. Journal of Geochemical Exploration, 56, 105–122. doi:10.1016/0375-6742(96)00010-6.

  21. Hooda, P. S., & Alloway, B. J. (1998). Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma, 84, 121–134. doi:10.1016/S0016-7061(97)00124-9.

  22. Horowitz, A. J. (1991). A primer in sediment-trace element chemistry. Chelsea: Lewis.

  23. Horowitz, A. J., Elrick, K. A., & Callender, E. (1988). The effect of mining on the sediment—Trace element geochemistry of cores from the Cheyenne River arm of Lake Oahe, South Dakota, U.S.A. Chemical Geology, 67, 17–33. doi:10.1016/0009-2541(88)90003-4.

  24. Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. (1997). Historic metal mining inputs to Tees river sediment. The Science of the Total Environment, 194/195, 437–445. doi:10.1016/S0048-9697(96)05381-8.

  25. Hudson-Edwards, K. A., Macklin, M. G., Curtis, C. D., & Vaughan, D. J. (1998). Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surface Processes and Landforms, 23, 671–684. doi:10.1002/(SICI)1096-9837(199808)23:8<671::AID-ESP871>3.0.CO;2-R.

  26. Hudson-Edwards, K. A., Macklin, M. G., Finlayson, R., & Passmore, D. G. (1999a). Mediaeval lead pollution in the River Ouse at York, England. Journal of Archaeological Science, 26, 809–819. doi:10.1006/jasc.1998.0357.

  27. Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. P. (1999b). 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. Hydrological Processes, 13, 1087–1102. doi:10.1002/(SICI)1099-1085(199905)13:7<1087::AID-HYP791>3.0.CO;2-T.

  28. Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Río Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72, 229–250. doi:10.1016/S0375-6742(01)00164-9.

  29. Hürkamp, K. (2006). Bewertung der potentiellen Gefährdung von Grund- und Oberflächenwässern infolge Mobilisierung von Schwermetallen aus bergbaubedingt kontaminierten Auensedimenten im nördlichen Vilstal/Opf. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 9. Retrieved September 15, 2006 from http://www.opus-bayern.de/uni-regensburg/frontdoor.php?source_opus=684.

  30. Hürkamp, K., Raab, T., & Völkel, J. (2008). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field-portable X-ray fluorescence (FPXRF) analysis. Geomorphology (accepted).

  31. Kabata-Pendias, A. (2000). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.

  32. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122. doi:10.1016/S0304-3894(00)00330-7.

  33. Klimek, K. (1999). A 1000 year alluvial sequence as an indicator of catchment/floodplain interaction: the Ruda valley, Sub-Carpathians, Poland. In A. G. Brown, & T. A. Quinne (Eds.), Fluvial processes and environmental change (pp. 329–343). Chichester: Wiley.

  34. Lewin, J., & Macklin, M. G. (1987). Metal mining and floodplain sedimentation. In V. Gardiner (Ed.), International geomorphology 1986 part 1 (pp. 1009–1027). Chichester: Wiley.

  35. Macklin, M. G. (1996). Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In M. G. Anderson, D. E. Walling, & P. D. Bates (Eds.), Floodplain processes (pp. 441–460). Chichester: Wiley.

  36. Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment: Results from selected English and Welsh floodplains. Applied Geochemistry, 9, 689–700. doi:10.1016/0883-2927(94)90028-0.

  37. Macklin, M. G., Hudson-Edwards, K. A., & Dawson, E. J. (1997). The significance of pollution from historic metal mining in the Pennine orefields on river sediment contaminant fluxes to the North Sea. The Science of the Total Environment, 194/195, 391–397. doi:10.1016/S0048-9697(96)05378-8.

  38. Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I. A., et al. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447. doi:10.1016/j.geomorph.2006.06.024.

  39. Martin, C. W. (1997). Heavy metal concentrations in floodplain surface soils, Lahn River, Germany. Environmental Geology, 30, 119–125. doi:10.1007/s002540050139.

  40. Matschullat, J., Ellminger, F., Agdemir, N., Cramer, S., Ließmann, W., & Niehoff, N. (1997). Overbank sediment profiles—Evidence of early mining and smelting activities in the Harz mountains, Germany. Applied Geochemistry, 12, 105–114. doi:10.1016/S0883-2927(96)00068-6.

  41. Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58, 101–118. doi:10.1016/S0375-6742(96)00073-8.

  42. Munksgaard, N. C., brazier, J. A., Moir, C. M., & Parry, D. L. (2003). The use of lead isotopes in monitoring environmental impacts of uranium and lead mining in Northern Australia. Australian Journal of Chemistry, 56, 233–238.

  43. Pope, L. M. (2005). Assessment of contaminated streambed sediment in the Kansas part of the historic Tri-State Lead and Zinc Mining District, Cherokee County, 2004. USGS Scientific Investigations Report 2005–5251, 61 pp. US Department of the Interior/US Geological Survey.

  44. Raab, T. (2005). Erfassung und Bewertung von Landschaftswandel in (prä-)historischen Montangebieten am Beispiel Ostbayerns. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 7. Retrieved September 15, 2006 from http://www.opus-bayern.de/uni-regensburg/volltexte/2005/581/.

  45. Raab, T., & Völkel, J. (2005). Soil geomorphological studies on the prehistoric to historic landscape change in the former mining area at the Vils River (Bavaria, Germany). Zeitschrift für Geomorphologie Neue Folge Supplement, 139, 129–145.

  46. Raab, T., Beckmann, S., Richard, N., & Völkel, J. (2005a). Reconstruction of floodplain evolution in former mining areas—The Vils River case study. Die Erde, 136, 47–62.

  47. Raab, T., Hürkamp, K., & Völkel, J. (2005b). Detection and quantification of heavy metal contamination in alluvial soils of historic mining areas by field portable x-ray fluorescence (FPXRF) analysis. Proceedings of International Conference on Problematic Soils, 25–27 May 2005, Eastern Mediterranean University, Famagusta, N-Cyprus, vol. 1, pp. 299–306.

  48. Raab, T., Hürkamp, K., Völkel, J., Bens, O., & Hüttl, R. F. (2008). Implications of historic soil pollution for floodplain renaturation concepts. In A. N. Dubois (Ed.), Soil contamination: New research. Nova Publishers, 173–188.

  49. Richard, N. (2005). Historischer Ausbau oder natürliche Entwicklung? Die fluviale Morphologie der Vils unter dem Einfluss des historischen Bergbaus. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 6. Retrieved September 15, 2006 from http://www.opus-bayern.de/uni-regensburg/volltexte/2005/564/.

  50. Ridgway, J., Flight, D. M. A., Martiny, B., Gomez-Caballero, A., Macias, R. C., & Greally, K. (1995). Overbank sediments from central Mexico: An evaluation of their use in geochemical mapping and in studies of contamination from modern and historical mining. Applied Geochemistry, 10, 97–109. doi:10.1016/0883-2927(94)00038-8.

  51. Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2006). Sediment–water interactions in an eroded and heavy metal contaminated peatland catchment, Southern Pennines, UK. Water, Air, and Soil Pollution, 6, 669–676. doi:10.1007/s11267-006-9052-3.

  52. Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2007). Lead contamination of fluvial sediments in an eroding blanket peat catchment. Applied Geochemistry, 22, 446–459. doi:10.1016/j.apgeochem.2006.11.002.

  53. Sipos, P., Németh, T., Kovács Kis, V., & Mohai, I. (2008). Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73, 461–469. doi:10.1016/j.chemosphere.2008.06.046.

  54. Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, A., et al. (1998). INTCAL98 radiocarbon age calibration, 24.000–0 cal BP. Radiocarbon, 40, 1041–1085.

  55. Swennen, R., & Van der Sluys, J. (2002). Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg. Journal of Geochemical Exploration, 75, 93–105. doi:10.1016/S0375-6742(02)00199-1.

  56. Völkel, J. (1995). Periglaziale Deckschichten und Böden im Bayerischen Wald und seinen Randgebieten als geogene Grundlagen landschaftsökologischer Forschung im Bereich naturnaher Waldstandorte. Zeitschrift für Geomorphologie, Neue Folge, Supplement 96.

  57. Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59(I), 505–510.

Download references

Author information

Correspondence to Kerstin Hürkamp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hürkamp, K., Raab, T. & Völkel, J. Lead Pollution of Floodplain Soils in a Historic Mining Area—Age, Distribution and Binding Forms. Water Air Soil Pollut 201, 331–345 (2009). https://doi.org/10.1007/s11270-008-9948-9

Download citation

Keywords

  • Field-portable X-ray fluorescence
  • Floodplain soils
  • Heavy metals
  • Lead
  • Pollution
  • Sequential extraction