Water, Air, and Soil Pollution

, Volume 201, Issue 1–4, pp 331–345 | Cite as

Lead Pollution of Floodplain Soils in a Historic Mining Area—Age, Distribution and Binding Forms

  • Kerstin HürkampEmail author
  • Thomas Raab
  • Jörg Völkel


Historic lead mining, milling and smelting on the floodplain soils of the upper reaches of the Vils River, Eastern Bavaria, Germany has led to heavy metal contamination within the younger floodplain sediments downstream. This study aims to date the lead pollution and possible primary sources, display and quantify its spatial distribution within the Vils River floodplain in accordance to soil horizons and characterise the binding forms of lead. One hundred fifty profiles were sampled to detect total contents of heavy metals. Sequential extractions were carried out to determine the binding forms; thus, the potential of lead mobility was characterised. The contamination of the floodplain soils act as an alluvial archive, providing a stratigraphical indicator of mining activities and related sedimentation. The age of the sediments displaying the initial lead peak in the alluvial loams corresponds with sediment accumulations at the onset of the mining period and its first phase of prosperity in the sixteenth century. Enrichments of lead in the oxidic gleysols revealed that dissolved fractions of lead precipitate in the groundwater table fluctuation zone. The sequential extraction proved that lead mobility increases in the psammic and hypersceletic fluvial horizons below the flood loams due to the modest salt contents of the extractants and low pH given in these layers. Thus, the risk of the particulate transport of lead has to be extended to include the danger of potential lead solubility in ground and surface waters. Further, the polluted alluvial sediments also act as a source of contamination, leading to the grave danger of the further pollution of so far uncontaminated areas downstream, especially if the reworking and dredging of the material is allowed to occur.


Field-portable X-ray fluorescence Floodplain soils Heavy metals Lead Pollution Sequential extraction 


  1. Allan, R. (1997). Mining and metals in the environment. Journal of Geochemical Exploration, 58, 95–100. doi: 10.1016/S0375-6742(97)00004-6.CrossRefGoogle Scholar
  2. Alloway, B. J. (1995). Heavy metals in soils. Berlin: Springer.Google Scholar
  3. BayGLA (1999). Bodenschutz in Bayern. Hintergrundwerte anorganischer Schadstoffe in den Böden Bayerns. München: Bayerisches Geologisches Landesamt Retrieved March 1, 2007, from Scholar
  4. BBodSchV (1999). Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999. Bundesgesetzblatt. Teil, I(36), 1554–1582 (Bonn).Google Scholar
  5. Beckmann, S. (2006). Kolluvien und Auensedimente als Geoarchive im Umfeld der historischen Hammerwerke Leidersdorf und Wolfsbach (Vils/Opf.). Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 12. Retrieved July 4, 2007 from
  6. Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., et al. (2003). The solid state partitioning of contaminant metals and as in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. doi: 10.1016/S0883-2927(03)00078-7.CrossRefGoogle Scholar
  7. Ad hoc Boden, A. G. (2005). Bodenkundliche Kartieranleitung. Hannover: Schweizerbart.Google Scholar
  8. Brown, A. G. (1997). Alluvial geoarchaeology—Floodplain archaeology and environmental change. Cambridge: Cambridge Manuals in Archaeology.Google Scholar
  9. Ciszewski, D. (2003). Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water, Air, and Soil Pollution, 143, 81–98. doi: 10.1023/A:1022825103974.CrossRefGoogle Scholar
  10. Ciszewski, D., Malik, I., & Szwarczewski, P. (2004). Pollution of the Mala Panew River sediments by heavy metals: Part II. Effect of changes in river valley morphology. Polish Journal of Environmental Studies, 13, 597–605.Google Scholar
  11. Craddock, P. T. (1995). Early metal mining and production. Edinburgh: Smithsonian Institution Press.Google Scholar
  12. Craddock, P. T., & Lang, J. (Eds.) (2003). Mining and metal production through the ages. London: British Museum Press.Google Scholar
  13. Dawson, E. J., & Macklin, M. G. (1998). Speciation of heavy metals on suspended sediment under high flow conditions in the River Aire, West Yorkshire, UK. Hydrological Processes, 12, 1483–1494. doi: 10.1002/(SICI)1099-1085(199807)12:9<1483::AID-HYP651>3.0.CO;2-W.CrossRefGoogle Scholar
  14. Dennis, I., Macklin, M. G., Coulthard, T. J., & Brewer, P. A. (2003). The impact of the October–November 2000 floods on contaminant metal dispersal in the River Swales catchment, North Yorkshire, UK. Hydrological Processes, 17, 1641–1657. doi: 10.1002/hyp.1206.CrossRefGoogle Scholar
  15. Durn, G., Miko, S., Covic, M., Barudzija, U., Tadej, N., Namjesnik-Dejanovic, K., et al. (1999). Distribution and behaviour of selected elements in soil developed over a historical Pb–Ag mining site at Sv. Jakob, Croatia. Journal of Geochemical Exploration, 67, 361–376. doi: 10.1016/S0375-6742(99)00064-3.CrossRefGoogle Scholar
  16. Gäbler, H. E. (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58, 185–194. doi: 10.1016/S0375-6742(96)00061-1.CrossRefGoogle Scholar
  17. Gäbler, H. E., & Schneider, J. (2000). Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39, 774–782. doi: 10.1007/s002540050493.CrossRefGoogle Scholar
  18. Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon Rivers. Geological Society of America Bulletin, 88, 829–843. doi: 10.1130/0016-7606(1977)88<829:TPOTMI>2.0.CO;2.CrossRefGoogle Scholar
  19. Hasel, K., & Schwartz, E. (2002). Forstgeschichte. Ein Grundriss für Studium und Praxis. Remagen: Kessel.Google Scholar
  20. Hindel, R., Schalich, J., De Vos, W., Ebbing, J., Swennen, R., & Van Keer, I. (1996). Vertical distribution of elements in overbank sediment profiles from Belgium, Germany and The Netherlands. Journal of Geochemical Exploration, 56, 105–122. doi: 10.1016/0375-6742(96)00010-6.CrossRefGoogle Scholar
  21. Hooda, P. S., & Alloway, B. J. (1998). Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma, 84, 121–134. doi: 10.1016/S0016-7061(97)00124-9.CrossRefGoogle Scholar
  22. Horowitz, A. J. (1991). A primer in sediment-trace element chemistry. Chelsea: Lewis.Google Scholar
  23. Horowitz, A. J., Elrick, K. A., & Callender, E. (1988). The effect of mining on the sediment—Trace element geochemistry of cores from the Cheyenne River arm of Lake Oahe, South Dakota, U.S.A. Chemical Geology, 67, 17–33. doi: 10.1016/0009-2541(88)90003-4.CrossRefGoogle Scholar
  24. Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. (1997). Historic metal mining inputs to Tees river sediment. The Science of the Total Environment, 194/195, 437–445. doi: 10.1016/S0048-9697(96)05381-8.CrossRefGoogle Scholar
  25. Hudson-Edwards, K. A., Macklin, M. G., Curtis, C. D., & Vaughan, D. J. (1998). Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surface Processes and Landforms, 23, 671–684. doi: 10.1002/(SICI)1096-9837(199808)23:8<671::AID-ESP871>3.0.CO;2-R.CrossRefGoogle Scholar
  26. Hudson-Edwards, K. A., Macklin, M. G., Finlayson, R., & Passmore, D. G. (1999a). Mediaeval lead pollution in the River Ouse at York, England. Journal of Archaeological Science, 26, 809–819. doi: 10.1006/jasc.1998.0357.CrossRefGoogle Scholar
  27. Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. P. (1999b). 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. Hydrological Processes, 13, 1087–1102. doi: 10.1002/(SICI)1099-1085(199905)13:7<1087::AID-HYP791>3.0.CO;2-T.CrossRefGoogle Scholar
  28. Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Río Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72, 229–250. doi: 10.1016/S0375-6742(01)00164-9.CrossRefGoogle Scholar
  29. Hürkamp, K. (2006). Bewertung der potentiellen Gefährdung von Grund- und Oberflächenwässern infolge Mobilisierung von Schwermetallen aus bergbaubedingt kontaminierten Auensedimenten im nördlichen Vilstal/Opf. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 9. Retrieved September 15, 2006 from
  30. Hürkamp, K., Raab, T., & Völkel, J. (2008). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field-portable X-ray fluorescence (FPXRF) analysis. Geomorphology (accepted).Google Scholar
  31. Kabata-Pendias, A. (2000). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.Google Scholar
  32. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122. doi: 10.1016/S0304-3894(00)00330-7.CrossRefGoogle Scholar
  33. Klimek, K. (1999). A 1000 year alluvial sequence as an indicator of catchment/floodplain interaction: the Ruda valley, Sub-Carpathians, Poland. In A. G. Brown, & T. A. Quinne (Eds.), Fluvial processes and environmental change (pp. 329–343). Chichester: Wiley.Google Scholar
  34. Lewin, J., & Macklin, M. G. (1987). Metal mining and floodplain sedimentation. In V. Gardiner (Ed.), International geomorphology 1986 part 1 (pp. 1009–1027). Chichester: Wiley.Google Scholar
  35. Macklin, M. G. (1996). Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In M. G. Anderson, D. E. Walling, & P. D. Bates (Eds.), Floodplain processes (pp. 441–460). Chichester: Wiley.Google Scholar
  36. Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment: Results from selected English and Welsh floodplains. Applied Geochemistry, 9, 689–700. doi: 10.1016/0883-2927(94)90028-0.CrossRefGoogle Scholar
  37. Macklin, M. G., Hudson-Edwards, K. A., & Dawson, E. J. (1997). The significance of pollution from historic metal mining in the Pennine orefields on river sediment contaminant fluxes to the North Sea. The Science of the Total Environment, 194/195, 391–397. doi: 10.1016/S0048-9697(96)05378-8.CrossRefGoogle Scholar
  38. Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I. A., et al. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447. doi: 10.1016/j.geomorph.2006.06.024.CrossRefGoogle Scholar
  39. Martin, C. W. (1997). Heavy metal concentrations in floodplain surface soils, Lahn River, Germany. Environmental Geology, 30, 119–125. doi: 10.1007/s002540050139.CrossRefGoogle Scholar
  40. Matschullat, J., Ellminger, F., Agdemir, N., Cramer, S., Ließmann, W., & Niehoff, N. (1997). Overbank sediment profiles—Evidence of early mining and smelting activities in the Harz mountains, Germany. Applied Geochemistry, 12, 105–114. doi: 10.1016/S0883-2927(96)00068-6.CrossRefGoogle Scholar
  41. Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58, 101–118. doi: 10.1016/S0375-6742(96)00073-8.CrossRefGoogle Scholar
  42. Munksgaard, N. C., brazier, J. A., Moir, C. M., & Parry, D. L. (2003). The use of lead isotopes in monitoring environmental impacts of uranium and lead mining in Northern Australia. Australian Journal of Chemistry, 56, 233–238.CrossRefGoogle Scholar
  43. Pope, L. M. (2005). Assessment of contaminated streambed sediment in the Kansas part of the historic Tri-State Lead and Zinc Mining District, Cherokee County, 2004. USGS Scientific Investigations Report 2005–5251, 61 pp. US Department of the Interior/US Geological Survey.Google Scholar
  44. Raab, T. (2005). Erfassung und Bewertung von Landschaftswandel in (prä-)historischen Montangebieten am Beispiel Ostbayerns. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 7. Retrieved September 15, 2006 from
  45. Raab, T., & Völkel, J. (2005). Soil geomorphological studies on the prehistoric to historic landscape change in the former mining area at the Vils River (Bavaria, Germany). Zeitschrift für Geomorphologie Neue Folge Supplement, 139, 129–145.Google Scholar
  46. Raab, T., Beckmann, S., Richard, N., & Völkel, J. (2005a). Reconstruction of floodplain evolution in former mining areas—The Vils River case study. Die Erde, 136, 47–62.Google Scholar
  47. Raab, T., Hürkamp, K., & Völkel, J. (2005b). Detection and quantification of heavy metal contamination in alluvial soils of historic mining areas by field portable x-ray fluorescence (FPXRF) analysis. Proceedings of International Conference on Problematic Soils, 25–27 May 2005, Eastern Mediterranean University, Famagusta, N-Cyprus, vol. 1, pp. 299–306.Google Scholar
  48. Raab, T., Hürkamp, K., Völkel, J., Bens, O., & Hüttl, R. F. (2008). Implications of historic soil pollution for floodplain renaturation concepts. In A. N. Dubois (Ed.), Soil contamination: New research. Nova Publishers, 173–188.Google Scholar
  49. Richard, N. (2005). Historischer Ausbau oder natürliche Entwicklung? Die fluviale Morphologie der Vils unter dem Einfluss des historischen Bergbaus. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 6. Retrieved September 15, 2006 from
  50. Ridgway, J., Flight, D. M. A., Martiny, B., Gomez-Caballero, A., Macias, R. C., & Greally, K. (1995). Overbank sediments from central Mexico: An evaluation of their use in geochemical mapping and in studies of contamination from modern and historical mining. Applied Geochemistry, 10, 97–109. doi: 10.1016/0883-2927(94)00038-8.CrossRefGoogle Scholar
  51. Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2006). Sediment–water interactions in an eroded and heavy metal contaminated peatland catchment, Southern Pennines, UK. Water, Air, and Soil Pollution, 6, 669–676. doi: 10.1007/s11267-006-9052-3.CrossRefGoogle Scholar
  52. Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2007). Lead contamination of fluvial sediments in an eroding blanket peat catchment. Applied Geochemistry, 22, 446–459. doi: 10.1016/j.apgeochem.2006.11.002.CrossRefGoogle Scholar
  53. Sipos, P., Németh, T., Kovács Kis, V., & Mohai, I. (2008). Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73, 461–469. doi: 10.1016/j.chemosphere.2008.06.046.CrossRefGoogle Scholar
  54. Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, A., et al. (1998). INTCAL98 radiocarbon age calibration, 24.000–0 cal BP. Radiocarbon, 40, 1041–1085.Google Scholar
  55. Swennen, R., & Van der Sluys, J. (2002). Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg. Journal of Geochemical Exploration, 75, 93–105. doi: 10.1016/S0375-6742(02)00199-1.CrossRefGoogle Scholar
  56. Völkel, J. (1995). Periglaziale Deckschichten und Böden im Bayerischen Wald und seinen Randgebieten als geogene Grundlagen landschaftsökologischer Forschung im Bereich naturnaher Waldstandorte. Zeitschrift für Geomorphologie, Neue Folge, Supplement 96.Google Scholar
  57. Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59(I), 505–510.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Geomorphology and Soil Science, Technische Universität MünchenCenter of Life and Food Sciences WeihenstephanFreisingGermany
  2. 2.Department of Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany

Personalised recommendations