Water, Air, and Soil Pollution

, Volume 201, Issue 1–4, pp 209–218 | Cite as

Diazinon Accumulation and Dissipation in Oryza sativa L. Following Simulated Agricultural Runoff Amendment in Flooded Rice Paddies

  • R. Kröger
  • M. T. Moore
  • C. M. Cooper
  • M. M. Holland
Article

Abstract

Flooded post-harvest rice paddies were examined as systems for reducing diazinon (organophosphate insecticide) concentrations in stormwater runoff. Two paddies were cultivated in Oryza sativa L. and amended with a 3-h simulated stormwater diazinon runoff event. Initial diazinon adsorption peaked at 347 and 571 μg kg−1 (3% mass load reduction) for mean above-ground plant tissue concentrations in each pond, respectively. Subsequent senescence of above-ground tissue showed significant decreases in tissue mass (r 2 = 0.985) and adsorbed diazinon mass (90 ± 4% and 82 ± 1%) within 1 month of amendment. There were no corollary increases in water column diazinon concentrations. Furthermore, control O. sativa tissue placed within the treatment ponds had below-detectable levels of diazinon throughout the decomposition phase, suggesting a lack of within pond transference of dissipated diazinon. This study shows the relative effectiveness of diazinon adsorption by post-harvest rice plants and a potential mitigation strategy of senescence and pesticide degradation for contaminated tailwater.

Keywords

Pesticide Diazinon Rice Stormwater Mitigation 

Notes

Acknowledgments

Financial support was gratefully received through the cooperative agreement between the USDA-ARS and the University of Mississippi, No. 58-6408-1-095. Thanks go to the staff of the Water Quality and Ecology Research Unit at the USDA-ARS (Sam Testa, Charlie Bryant, Tim Sullivan, Calvin Vick, John Massey, and Terry Welch) for field help and especially to Lisa Brooks and Sammie Smith Jr. for sample preparation and analyses.

References

  1. Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79, 273–276. doi: 10.1016/S0960-8524(01)00016-5.CrossRefGoogle Scholar
  2. Banks, K. E., Turner, P. K., Wood, S. H., & Matthews, C. (2005). Increased toxicity to Ceriodaphnia dubia in mixtures of atrazine and diazinon at environmentally realistic concentrations. Ecotoxicology and Environmental Safety, 60, 28–36. doi: 10.1016/j.ecoenv.2003.12.016.CrossRefGoogle Scholar
  3. Bennett, E. R., Moore, M. T., Cooper, C. M., & Smith, S. J. (2000). Method for simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 64, 825–833. doi: 10.1007/s001280000077.CrossRefGoogle Scholar
  4. Brady, J. A., Wallender, W. W., Werner, I., Fard, B. M., Zalom, F. G., Oliver, M. N., et al. (2006). Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agriculture Ecosystems & Environment, 115, 56–68. doi: 10.1016/j.agee.2005.12.009.CrossRefGoogle Scholar
  5. Branham, B. E., & Wehner, D. J. (1985). The fate of diazinon applied to thatched turf. Agronomy Journal, 77, 101–104.Google Scholar
  6. Cronk, J. K., & Fennessy, M. S. (2001). Wetland plants: Biology and ecology. NY: Lewis.Google Scholar
  7. de Vlaming, V., DiGiorgio, C., Fong, S., Deanovic, L. A., de la Paz Carpio-Obeso, M., et al. (2004). Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA). Environmental Pollution, 132, 213–229. doi: 10.1016/j.envpol.2004.04.025.CrossRefGoogle Scholar
  8. Domagalski, J. (1996). Pesticides and pesticide degradation products in stormwater runoff: Sacramento River basin, California. Water Resources Bulletin, 32(5), 953–964.Google Scholar
  9. Epstein, L., Bassein, S., Zalom, F. G., & Wilhoit, L. R. (2001). Changes in pest management practice in almond orchards during the rainy season in California, USA. Agriculture Ecosystems & Environment, 83, 111–120. doi: 10.1016/S0167-8809(00)00201-2.CrossRefGoogle Scholar
  10. Evans, J. R., Edwards, D. R., Workman, S. R., & Williams, R. M. (1998). Response of runoff diazinon concentration to formulation and post application irrigation. Transactions of the ASAE. American Society of Agricultural Engineers, 41(5), 1323–1329.Google Scholar
  11. Giddings, J. M., Biever, R. C., Annunziato, M. F., & Hosmer, A. J. (1996). Effects of diazinon on large outdoor pond microcosms. Environmental Toxicology and Chemistry, 15(5), 618–629. doi: 10.1897/1551-5028(1996)015<0618:EODOLO>2.3.CO;2.CrossRefGoogle Scholar
  12. Graebing, P., & Chib, J. S. (2004). Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides. Journal of Agricultural and Food Chemistry, 52, 2606–2614. doi: 10.1021/jf030767l.CrossRefGoogle Scholar
  13. Gunner, H. B., Zuckerman, B. M., Walker, R. W., Miller, C. W., Deubert, K. H., & Longley, R. E. (1966). The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant and Soil, 25(2), 249–264. doi: 10.1007/BF01347822.CrossRefGoogle Scholar
  14. Holmes, R. W., & de Vlaming, V. (2003). Monitoring of diazinon concentrations and loadings, and identification of geographic origins consequent to stormwater runoff from orchards in the Sacramento River watershed, U.S.A. Environmental Monitoring and Assessment, 87, 57–79. doi: 10.1023/A:1024437913245.CrossRefGoogle Scholar
  15. Horst, G. L., Shea, P. J., Christians, N., Miller, D. R., Stuefer-Powell, C., & Starrett, S. K. (1996). Pesticide dissipation under golf course fairway conditions. Crop Science, 36, 362–370.CrossRefGoogle Scholar
  16. Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271. doi: 10.1021/es960409h.CrossRefGoogle Scholar
  17. Jayaweera, M. W., Kasturiarachchi, J. C., Kularatne, R. K. A., & Wijeyekoon, L. J. (2008). Contribution of water hyacinth (Eichornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management, 87, 450–460. doi: 10.1016/j.jenvman.2007.01.013.CrossRefGoogle Scholar
  18. Joyce, B. A., Wallender, W. W., Angermann, T., & Wilson, B. W. (2004). Using infiltration enhancement and soil water management to reduce diazinon in runoff. Journal of the American Water Resources Association, 40(4), 1063–1070. doi: 10.1111/j.1752-1688.2004.tb01067.x.CrossRefGoogle Scholar
  19. Kansouh, A. S. H., & Hopkins, T. L. (1968). Diazinon absorption, translocation and metabolism in bean plants. Journal of Agricultural and Food Chemistry, 16(3), 446–450. doi: 10.1021/jf60157a021.CrossRefGoogle Scholar
  20. Kratzer, C. R. (1999). Transport of diazinon in the San Joaquin River basin, California. Journal of the American Water Resources Association, 35(2), 379–395. doi: 10.1111/j.1752-1688.1999.tb03597.x.CrossRefGoogle Scholar
  21. Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2007). Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Environmental Pollution, 146, 114–119. doi: 10.1016/j.envpol.2006.06.005.CrossRefGoogle Scholar
  22. Laanio, T. L., Dupuis, G., & Esser, H. O. (1972). Fate of 14C-labeled diazinon in rice, paddy soil, and pea plants. Journal of Agricultural and Food Chemistry, 20(6), 1213–1219. doi: 10.1021/jf60184a044.CrossRefGoogle Scholar
  23. Larkin, D. J., & Tjeerdama, R. S. (2000). Fate and effects of diazinon. Reviews of Environmental Contamination and Toxicology, 166, 49–82.Google Scholar
  24. Macek, T., Mackova, M., & Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18, 23–34. doi: 10.1016/S0734-9750(99)00034-8.CrossRefGoogle Scholar
  25. Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localization of lead in the root system of Brassica juncea. Environmental Pollution, 153, 323–332. doi: 10.1016/j.envpol.2007.08.029.CrossRefGoogle Scholar
  26. Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121, 1–63.Google Scholar
  27. Schiff, K., & Sutula, M. (2004). Organophosphorus pesticides in storm-water runoff from southern California (USA). Environmental Toxicology and Chemistry, 23(8), 1815–1821. doi: 10.1897/03-401.CrossRefGoogle Scholar
  28. Schueler, T. (1995). Urban pesticides: from lawn to the stream. Watershed Protection Techniques, 2(1), 247–253.Google Scholar
  29. Smith, S. J., & Cooper, C. M. (2004). Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In M. Nett, M. Locke, and D. Pennington Water Quality Assessments in the Mississippi Delta, Regional Solutions, National Scope. (Pages 91–103). ACS Symposium series 877, American Chemical Society, Oxford University Press, Chicago, IL.Google Scholar
  30. Smith Jr, S., Cooper, C. M., Lizotte Jr, R. E., & Shields Jr., F. D. (2006). Storm pesticide concentrations in Little Toposhaw Creek, USA. International Journal of Ecology and Environmental Sciences, 32(2), 173–182.Google Scholar
  31. Syversen, N., & Haarstad, K. (2005). Retention of pesticides and nutrients in a vegetated buffer root zone compared to soil with low biological activity. International Journal of Environmental Analytical Chemistry, 85(15), 1175–1187. doi: 10.1080/03067310500117400.CrossRefGoogle Scholar
  32. USEPA. (2007). EPA announces requests to voluntarily cancel registrations of diazinon. EPA announcement. http://www.epa.gov/oppfead1/cb/csb_page/updates/diazin-volcanc.html. Accessed 08/24/2007.
  33. Watanabe, H., & Grismer, M. E. (2001). Diazinon transport through inter-row vegetative filter strips: micro-ecosystem modeling. Journal of Hydrology (Amsterdam), 247, 183–199. doi: 10.1016/S0022-1694(01)00385-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. Kröger
    • 1
  • M. T. Moore
    • 2
  • C. M. Cooper
    • 2
  • M. M. Holland
    • 3
  1. 1.Department of Wildlife and FisheriesMississippi State UniversityMississippi StateUSA
  2. 2.USDA-ARSNational Sedimentation LaboratoryOxfordUSA
  3. 3.Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations