Water, Air, and Soil Pollution

, Volume 201, Issue 1–4, pp 195–208 | Cite as

Heavy Metal–Mineral Associations in Coeur d’Alene River Sediments: A Synchrotron-Based Analysis

  • James G. Moberly
  • Thomas Borch
  • Rajesh K. Sani
  • Nicolas F. Spycher
  • S. Sevinc Şengör
  • Timothy R. Ginn
  • Brent M. Peyton


Nearly a century of mining activities upstream have contaminated Lake Coeur d’Alene and its tributaries with Pb, Zn, and other heavy metals. Heavy metal concentrations in sediments of the Coeur d’Alene watershed have been shown to be inversely proportional to the sediment size fraction; thus, analysis on a very small scale is essential to determine the mobility and stability of heavy metals in this environment. Micron-scale synchrotron-based methods were used to determine the association of heavy metals with solid phases in sediments of the Coeur d’Alene River. Bulk X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy, and synchrotron-based microfocused XRD combined with microfocused X-ray fluorescence mapping indicate the presence of crystalline Pb- and Zn-bearing mineral phases of dundasite [Pb2Al4(CO3)4(OH)8·3H2O], coronadite [PbMn8O16], stolzite [PbWO4], mattheddleite [Pb10(SiO4)3.5(SO4)2Cl2], bindheimite [Pb2Sb2O7], and smithsonite [ZnCO3]. Likely phases for Zn and Pb adsorption were ferrihydrite, diaspore [AlO(OH)], manganite [Mn(III)O(OH)], muscovite [KAl2(Si3Al)O10(OH,F)2], biotite [K(Fe,Mg)3AlSi3O10(F,OH)2], and montmorillonite [Na0.3(Al,Mg)2Si4O10(OH)2·8H2O]. The large predominance of Fe and Mn (hydr)oxides over other sorbent minerals suggests that the metal sorption behavior is dominated by these (hydr)oxide phases.


Coeur d’Alene Zinc Lead Sediment Characterization XAS 



This material is based upon work supported by the National Science Foundation under Grant No. 0628258. The support of the WSU Center for Multiphase Environmental Research and the WSU School of Chemical and Bioengineering also contributed significantly to this research. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors greatly appreciate the help of Charles Knaack, Diane Johnson Cornelius, and Rick Conrey at WSU Geo Analytical Laboratories for sample analysis and counsel. Additional thanks to Peg Dirckx, Brandy Stewart, Lisa Kirk, and two anonymous reviewers for greatly improving the quality of the manuscript.


  1. Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (1990). Handbook of mineralogy. Mineral Data Publishing by permission of the Mineralogical Society of America, Tucson Arizona, USA.Google Scholar
  2. Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437. doi: 10.1016/j.chemosphere.2007.04.068.CrossRefGoogle Scholar
  3. Balistrieri, L. S., Box, S. E., & Tonkin, J. W. (2003). Modeling precipitation and sorption of elements during mixing of river water and pore water in the Coeur d’Alene River basin. Environmental Science & Technology, 37(20), 4694–4701. doi: 10.1021/es0303283.CrossRefGoogle Scholar
  4. Bookstrom, A. A., Box, S. E., Campbell, J. K., Foster, K. I., & Jackson, B. L. (2001). Lead-rich sediments, Coeur d’Alene River Valley, Idaho: Area, volume, Tonnage, and lead content. US Geological Survey Open-File Report, 01-140.Google Scholar
  5. Borch, T., & Fendorf, S. (2008). Phosphate interactions with iron (Hydr) oxides: mineralization pathways and phosphorus retention upon bioreduction. In M. O. Barnett, & D. B. Kent (Eds.), Developments in earth and environmental sciences (7), Adsorption of metals by geomedia II: Variables, mechanisms, and model application (pp. 321–348). Amsterdam: Elsevier.Google Scholar
  6. Borch, T., Masue, Y., Kukkadapu, R. K., & Fendorf, S. (2007). Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science & Technology, 41(1), 166–172. doi: 10.1021/es060695p.CrossRefGoogle Scholar
  7. Borch, T., Camper, A. K., Biederman, J. A., Butterfield, P. W., Gerlach, R., & Amonette, J. E. (2008). Evaluation of characterization techniques for iron pipe corrosion products and iron oxide thin films. Journal of Environmental Engineering, 134(10), 835–844. doi: 10.1061/(ASCE)0733-9372(2008)134:10(835).CrossRefGoogle Scholar
  8. Bostick, B. C., Hansel, C. M., La Force, M. J., & Fendorf, S. (2001). Seasonal fluctuations in zinc speciation within a contaminated wetland. Environmental Science & Technology, 35(19), 3823–3829. doi: 10.1021/es010549d.CrossRefGoogle Scholar
  9. Box, S.E., Bookstrom, A.A., & Ikramuddin, M. (2005). Stream-Sediment Geochemistry in Mining-Impacted Streams: Sediment Mobilized by Floods in the Coeur d’Alene-Spokane River System, Idaho and Washington. In U.S.D.o.t. Interior and U.S.G. Survey (eds.), USGS.Google Scholar
  10. Brim, H., Heuer, H., Krogerrecklenfort, E., Mergeay, M., & Smalla, K. (1999). Characterization of the bacterial community of a zinc-polluted soil. Canadian Journal of Microbiology, 45(4), 326–338. doi: 10.1139/cjm-45-4-326.CrossRefGoogle Scholar
  11. Cocco, G., Fanfani, L., Nunzi, A., & Zanazzi, P. F. (1972). The crystal structure of dundasite. Mineralogical Magazine, 38(297), 564–569. doi: 10.1180/minmag.1972.038.297.04.CrossRefGoogle Scholar
  12. Comin, F., Incoccia, L., & Mobilio, S. (1983). Glitches compensation in EXAFS data-collection. Journal of Physics. E, Scientific Instruments, 16(1), 83–86. doi: 10.1088/0022-3735/16/1/016.CrossRefGoogle Scholar
  13. Cummings, D. E., March, A. W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S., et al. (2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Applied and Environmental Microbiology, 66(1), 154–162.CrossRefGoogle Scholar
  14. Downs, R. T. (2006). The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan.Google Scholar
  15. Farag, A. M., Woodward, D. F., Goldstein, J. N., Brumbaugh, W., & Meyer, J. S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho. Archives of Environmental Contamination and Toxicology, 34(2), 119–127. doi: 10.1007/s002449900295.CrossRefGoogle Scholar
  16. Farag, A. M., Suedkamp, M. J., Meyer, J. S., Barrows, R., & Woodward, D. F. (2000). Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, USA, and fed artificially contaminated Artemia. Journal of Fish Biology, 56(1), 173–190. doi: 10.1111/j.1095-8649.2000.tb02093.x.CrossRefGoogle Scholar
  17. Farquhar, M. L., Vaughan, D. J., Hughes, C. R., Charnock, J. M., & England, K. E. R. (1997). Experimental studies of the interaction of aqueous metal cations with mineral substrates: lead, cadmium, and copper with perthitic feldspar, muscovite, and biotite. Geochimica et Cosmochimica Acta, 61(15), 3051–3064. doi: 10.1016/S0016-7037(97)00117-8.CrossRefGoogle Scholar
  18. Farrand, W. H., & Harsanyi, J. C. (1997). Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sensing of Environment, 59(1), 64–76. doi: 10.1016/S0034-4257(96)00080-6.CrossRefGoogle Scholar
  19. Fleck, R. J., Criss, R. E., Eaton, G. F., Cleland, R. W., Wavra, C. S., & Bond, W. D. (2002). Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 97(1), 23–42. doi: 10.2113/97.1.23.Google Scholar
  20. Fredrickson, J. K., Zachara, J. M., Kukkadapu, R. K., Gorby, Y. A., Smith, S. C., & Brown, C. F. (2001). Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environmental Science & Technology, 35(4), 703–712. doi: 10.1021/es001500v.CrossRefGoogle Scholar
  21. Friedrich, F., Gasharova, B., Mathis, Y. L., Nuesch, R., & Weidler, P. G. (2006). Far-infrared spectroscopy of interlayer vibrations of Cu(II), Mg(II), Zn(II), and Al(III) intercalated muscovite. Applied Spectroscopy, 60(7), 723–728. doi: 10.1366/000370206777887053.CrossRefGoogle Scholar
  22. Geesey, G. G., Borch, T., & Reardon, C. L. (2008). Resolving biogeochemical phenomena at high spatial resolution through electron microscopy. Geobiology, 6(3), 263–269. doi: 10.1111/j.1472-4669.2008.00160.x.CrossRefGoogle Scholar
  23. Ginder-Vogel, M., Borch, T., Mayes, M. A., Jardine, P. M., & Fendorf, S. (2005). Chromate reduction and retention processes within arid subsurface environments. Environmental Science & Technology, 39(20), 7833–7839. doi: 10.1021/es050535y.CrossRefGoogle Scholar
  24. Greene, A. C., & Madgwick, J. C. (1991). Microbial formation of manganese oxides. Applied and Environmental Microbiology, 57(4), 1114–1120.Google Scholar
  25. Grieco, R.A. (1981). Petrology and geochemistry of carbonate veins in the Moe-Reindeer Queen mineral belt of the Coeur d'Alene mining district, Idaho-Montana. Masters Thesis, Washington State University, 1981.Google Scholar
  26. Grosbois, C. A., Horowitz, A. J., Smith, J. J., & Elrick, K. A. (2001). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part III. Downstream effects: The Spokane River Basin. Hydrological Processes, 15(5), 855–875. doi: 10.1002/hyp.192.CrossRefGoogle Scholar
  27. Hammersley, A.P. (1997). FIT2D: An introduction and overview. European Synchrotron Radiation Facility, Grenoble, France.Google Scholar
  28. Hansel, C. M., Benner, S. G., Neiss, J., Dohnalkova, A., Kukkadapu, R. K., & Fendorf, S. (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16), 2977–2992. doi: 10.1016/S0016-7037(03)00276-X.CrossRefGoogle Scholar
  29. Harrington, J. M., Fendorf, S. E., & Rosenzweig, R. F. (1998a). Biotic generation of arsenic(III) in metal(loid)-contaminated freshwater lake sediments. Environmental Science & Technology, 32(16), 2425–2430. doi: 10.1021/es971129k.CrossRefGoogle Scholar
  30. Harrington, J. M., LaForce, M. J., Rember, W. C., Fendorf, S. E., & Rosenzweig, R. F. (1998b). Phase associations and mobilization of iron and trace elements in Coeur d'Alene Lake, Idaho. Environmental Science & Technology, 32(5), 650–656. doi: 10.1021/es970492o.CrossRefGoogle Scholar
  31. Haus, K. L., Hooper, R. L., Strumness, L. A., & Mahoney, J. B. (2007). Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM. Applied Geochemistry, 23(4), 692–704. doi: 10.1016/j.apgeochem.2007.11.005.CrossRefGoogle Scholar
  32. Horowitz, A.J. (1993). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho. Part II, Surface sediments. In G.S. (U.S.) (ed.), U.S. Dept. of the Interior, U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor], Atlanta, Ga. Denver, CO.Google Scholar
  33. Horowitz, A.J., Elrick, K.A. & Cook, R.B. (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part 1, Surface sediments. In G.S. (U.S.) (ed.), U.S. Dept. of the Interior, U.S. Geological Survey; U.S. Geological Survey, Open-File Reports Section [distributor], Doraville, Ga. Denver, Colo.Google Scholar
  34. Horowitz, A. J., Elrick, K. A., Robbins, J. A., & Cook, R. B. (1995a). A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Journal of Geochemical Exploration, 52(1-2), 135–144. doi: 10.1016/0375-6742(94)00041-9.CrossRefGoogle Scholar
  35. Horowitz, A. J., Elrick, K. A., Robbins, J. A., & Cook, R. B. (1995b). Effect of mining and related activities on the sediment trace-element geochemistry of Lake Coeur-Dalene, Idaho, USA. 2. Subsurface sediments. Hydrological Processes, 9(1), 35–54. doi: 10.1002/hyp.3360090105.CrossRefGoogle Scholar
  36. Horowitz, A. J., Elrick, K. A., & Cook, R. B. (1999). Comment on “Phase Associations and Mobilization of Iron and trace elements in Coeur d’Alene Lake, Idaho”. Environmental Science & Technology, 33, 201–202. doi: 10.1021/es980498t.CrossRefGoogle Scholar
  37. Kalnejais, L. H., Martin, W. R., Signell, R. P., & Bothner, M. H. (2007). Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science & Technology, 41(7), 2282–2288. doi: 10.1021/es061770z.CrossRefGoogle Scholar
  38. Konopka, A., Zakharova, T., Bischoff, M., Oliver, L., Nakatsu, C., & Turco, R. F. (1999). Microbial biomass and activity in lead-contaminated soil. Applied and Environmental Microbiology, 65(5), 2256–2259.Google Scholar
  39. Kurek, E., Kaczorowska, R., Nadulska, I., Ochal, M., Puacz, E., & Patkowska, E. (1996). Retention of Cd by soil constituents under different environmental conditions. Chemosphere, 33(2), 277–284. doi: 10.1016/0045-6535(96)00170-1.CrossRefGoogle Scholar
  40. Kuwabara, J. S., Carter, J. L., Topping, B. R., Fend, S. V., Woods, P. F., Berelson, W. M., et al. (2003). Importance of sediment-water interactions in Coeur d'Alene Lake, Idaho, USA: Management implications. Environmental Management, 32(3), 348–359. doi: 10.1007/s00267-003-0020-7.CrossRefGoogle Scholar
  41. La Force, M. J., Fendorf, S. E., Li, G. C., Schneider, G. M., & Rosenzweig, R. F. (1998). A laboratory evaluation of trace element mobility from flooding and nutrient loading of Coeur d'Alene River sediments. Journal of Environmental Quality, 27(2), 318–328.Google Scholar
  42. La Force, M. J., Fendorf, S., Li, G. C., & Rosenzweig, R. F. (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation. Journal of Environmental Quality, 28(4), 1195–1200.Google Scholar
  43. Lawson, F., & Meyer, H. C. (1964). Occurrence of bindheimite in North-West Queensland. Australian Journal of Earth Sciences, 11(1), 61–64. doi: 10.1080/00167616408728559.CrossRefGoogle Scholar
  44. Leach, D. L., Landis, G. P., & Hofstra, A. H. (1985). Metamorphic origin of the Coeur d’Alene base- and precious-metal veins in the Belt basin, Idaho and Montana. Geology, 16(2), 122–125. doi: 10.1130/0091-7613(1988)016<0122:MOOTCD>2.3.CO;2.CrossRefGoogle Scholar
  45. Lin, Y. M., Yang, X. F., & Liu, Y. (2003). Kinetic responses of activated sludge microorganisms to individual and joint copper and zinc. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 38(2), 353–360. doi: 10.1081/ESE-120016899.Google Scholar
  46. Lloyd, J. R., & Lovley, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology, 12(3), 248–253. doi: 10.1016/S0958-1669(00)00207-X.CrossRefGoogle Scholar
  47. Lothenbach, B., Furrer, G., & Schulin, R. (1997). Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environmental Science & Technology, 31(5), 1452–1462. doi: 10.1021/es960697h.CrossRefGoogle Scholar
  48. Manceau, A., Marcus, M. A., Tamura, N., Proux, O., Geoffroy, N., & Lanson, B. (2004). Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta, 68(11), 2467–2483. doi: 10.1016/j.gca.2003.11.021.CrossRefGoogle Scholar
  49. Mauk, J. L., & White, B. G. (2004). Stratigraphy of the Proterozoic Revett Formation and its control on Ag–Pb–Zn vein mineralization in the Coeur d'Alene district, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 99(2), 295–312. doi: 10.2113/99.2.295.Google Scholar
  50. Maxfield, D., Rodriguez, J. M., Buettner, M., Davis, J., Forbes, L., Kovacs, R., et al. (1974a). Heavy metal content in the sediments of the southern part of the Coeur d'Alene Lake. Environmental Pollution (1970), 6(4), 263–266.CrossRefGoogle Scholar
  51. Maxfield, D., Rodriguez, J. M., Buettner, M., Davis, J., Forbes, L., Kovacs, R., et al. (1974b). Heavy metal pollution in the sediments of the Coeur d'Alene river delta. Environmental Pollution (1970), 7(1), 1–6.CrossRefGoogle Scholar
  52. Melchiorre, E. B., Williams, P. A., & Bevins, R. E. (2001). A low temperature oxygen isotope thermometer for cerussite, with applications at Broken Hill, New South Wales, Australia. Geochimica et Cosmochimica Acta, 65(15), 2527–2533. doi: 10.1016/S0016-7037(01)00604-4.CrossRefGoogle Scholar
  53. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.CrossRefGoogle Scholar
  54. Panneerselvam, K., Macfarlane, A. W., & Salters, V. J. M. (2006). Provenance of ore metals in base and precious metal deposits of Central Idaho as inferred from lead isotopes. Economic Geology and the Bulletin of the Society of Economic Geologists, 101(5), 1063–1077. doi: 10.2113/gsecongeo.101.5.1063.Google Scholar
  55. Paulson, A. J. (1997). The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, Idaho, U.S.A. Applied Geochemistry, 12(4), 447–464. doi: 10.1016/S0883-2927(97)00013-9.CrossRefGoogle Scholar
  56. Paulson, A. J. (2001). Biogeochemical removal of Zn and Cd in the Coeur d'Alene River (Idaho, USA), downstream of a mining district. The Science of the Total Environment, 278(1-3), 31–44. doi: 10.1016/S0048-9697(00)00886-X.CrossRefGoogle Scholar
  57. Paulson, A. J., & Balistrieri, L. (1999). Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters. Environmental Science & Technology, 33(21), 3850–3856. doi: 10.1021/es9900454.CrossRefGoogle Scholar
  58. Post, J. E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3447. doi: 10.1073/pnas.96.7.3447.CrossRefGoogle Scholar
  59. Post, J. E., & Bish, D. L. (1989). Rietveld refinement of the coronadite structure. The American Mineralogist, 74(7-8), 913–917.Google Scholar
  60. Reece, D. E., Felkey, J. R., & Wai, C. M. (1978). Heavy metal pollution in the sediments of the Coeur d'Alene River, Idaho. Environmental Geology, 2(5), 289–293. doi: 10.1007/BF02430675.CrossRefGoogle Scholar
  61. Rosenberg, P. E., & Larson, P. B. (2000). Isotope geochemistry of ankerite-bearing veins associated with the Coeur d'Alene Mining District, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 95(8), 1689–1699. doi: 10.2113/95.8.1689.Google Scholar
  62. Sani, R. K., Peyton, B. M., & Brown, L. T. (2001). Copper induced inhibition of growth of Desulfovibrio desulfuricans G20: Assessment of its toxicity and correlation with those of zinc and lead. Applied and Environmental Microbiology, 67, 4765–4772. doi: 10.1128/AEM.67.10.4765-4772.2001.CrossRefGoogle Scholar
  63. Scheinost, A. C., Abend, S., Pandya, K. I., & Sparks, D. L. (2001). Kinetic controls on Cu and Pb sorption by ferrihydrite. Environmental Science & Technology, 35(6), 1090–1096. doi: 10.1021/es000107m.CrossRefGoogle Scholar
  64. Schlegel, M. L., & Manceau, A. (2007). Zn incorporation in hydroxy-Al- and Keggin Al-13-intercalated montmorillonite: A powder and polarized EXAFS study. Environmental Science & Technology, 41(6), 1942–1948. doi: 10.1021/es061958i.CrossRefGoogle Scholar
  65. Schwertmann, U., & Cornell, R.M. (2000). Iron oxides in the laboratory. Weinheim: Wiley-VCH.Google Scholar
  66. Sengör, S., Spycher, N. F., Ginn, T. R., Sani, R. K., & Peyton, B. (2007). Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments. Applied Geochemistry, 22(12), 2569–2594. doi: 10.1016/j.apgeochem.2007.06.011.CrossRefGoogle Scholar
  67. Spear, T. M., Svee, W., Vincent, J. H., & Stanisich, N. (1998). Chemical speciation of lead dust associated with primary lead smelting. Environmental Health Perspectives, 106(9), 565–571. doi: 10.2307/3434231.CrossRefGoogle Scholar
  68. Sprenke, K. F., Rember, W. C., Bender, S. F., Hoffmann, M. L., Rabbi, F., & Chamberlain, V. E. (2000). Toxic metal contamination in the lateral lakes of the Coeur d'Alene River valley, Idaho. Environmental Geology, 39(6), 575–586. doi: 10.1007/s002540050469.CrossRefGoogle Scholar
  69. Toevs, G. R., Morra, M. J., Polizzotto, M. L., Strawn, D. G., Bostick, B. C., & Fendorf, S. (2006). Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science & Technology, 40(8), 2537–2543. doi: 10.1021/es051781c.CrossRefGoogle Scholar
  70. Tonkin, J., Balistrieri, L., & Murray, J. (2002). Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environmental Science & Technology, 36(3), 484–492. doi: 10.1021/es0109085.CrossRefGoogle Scholar
  71. Webb, S. M. (2005). SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Physica Scripta, T115, 1011–1014. doi: 10.1238/Physica.Topical.115a01011.CrossRefGoogle Scholar
  72. Winowiecki, L. (2002). Geochemical cycling of heavy metals in the sediment of Lake Coeur d'Alene, Idaho. Masters Thesis, University of Idaho, Moscow, Idaho 2002.Google Scholar
  73. Woods, P. F., & Beckwith, M. A. (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey Water-Supply Paper, 2485, 1–93.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • James G. Moberly
    • 1
    • 2
  • Thomas Borch
    • 3
  • Rajesh K. Sani
    • 1
    • 4
  • Nicolas F. Spycher
    • 5
  • S. Sevinc Şengör
    • 6
  • Timothy R. Ginn
    • 6
  • Brent M. Peyton
    • 2
  1. 1.School of Chemical and BioengineeringWashington State UniversityPullmanUSA
  2. 2.Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA
  3. 3.Departments of Chemistry and Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  4. 4.Chemical and Biological Engineering DepartmentSouth Dakota School of Mines and TechnologyRapid CityUSA
  5. 5.Geochemistry Department, Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations