Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of Response Surface Methodology to Analyze the Effects of Soil/Liquid Ratio, pH, and Incubation Time on the Bioaccessibility of PAHs from Soil in In Vitro Method

  • 189 Accesses

  • 9 Citations

Abstract

Central composite design using response surface methodology was employed to optimize soil/liquid ratio (S/L), pH, and incubation time for polycyclic aromatic hydrocarbons (PAHs) bioaccessibility from soil in a simulated gastrointestinal tract. The magnitude of PAHs bioaccessibility in intestinal tract was found higher than that in gastric tract. Results showed that S/L had significant negative effects on the bioaccessibility of PAHs in both the gastric and intestinal tracts. The effect of pH on the intestinal tract was significantly negative, while on the gastric tract, it was positive. The incubation time presented an insignificant effect in gastric tract despite its significant positive effect in intestinal tract. The worst-case bioaccessibility conditions for PAHs in the gastric tract were found to be S/L 0.004, pH 2, and incubation time 3 h, with the maximum bioaccessibility of PAHs at 6.0% compared with 41.8% in intestinal tract with S/L 0.004, pH 6.5, and incubation time 6 h.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bandaru, V. V. R., Somalanka, S. R., Mendu, D. R., Madicherla, N. R., & Chityala, A. (2006). Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzyme and Microbial Technology, 38, 209–214. doi:10.1016/j.enzmictec.2005.06.002.

  2. Calabrese, E. J., Stanek, E. J., James, R. C., & Roberts, S. M. (1997). Soil ingestion: A concern for acute toxicity in children. Environmental Health Perspectives, 105(12), 1354–1358. doi:10.2307/3433755.

  3. Calvet, R. (1989). Adsorption of organic chemicals in soils. Environmental Health Perspectives, 83, 145–177. doi:10.2307/3430653.

  4. Collins, J. F., Brown, J. P., Alexeeff, G. V., & Salmon, A. G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28(1), 45–54. doi:10.1006/rtph.1998.1235.

  5. Davis, A., Ruby, M. V., Goad, P., Eberle, S., & Chryssoulis, S. (1997). Mass balance on surface-bound, mineralogic, and total lead concentrations as related to industrial aggregate bioaccessibility. Environmental Science & Technology, 31(1), 37–44. doi:10.1021/es950960z.

  6. Dean, J. R., & Ma, R. L. (2007). Approaches to assess the oral bioaccessibility of persistent organic pollutants: A critical review. Chemosphere, 68(8), 1399–1407. doi:10.1016/j.chemosphere.2007.03.054.

  7. Ding, J. Y., & Wu, S. C. (1997). Transport of organochlorine pesticides in soil columns enhanced by dissolved organic carbon. Water Science and Technology, 35(7), 139–145. doi:10.1016/S0273-1223(97)00124-8.

  8. Gonzalez, A., Foster, K. L., & Hanrahan, G. (2007). Method development and validation for optimized separation of benzo[a]pyrene-quinone isomers using liquid chromatography-mass spectrometry and chemometric response surface methodology. Journal of Chromatography. A, 1167(2), 135–142. doi:10.1016/j.chroma.2007.08.035.

  9. Hack, A., & Selenka, F. (1996). Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicology Letters, 88, 199–210. doi:10.1016/0378-4274(96)03738-1.

  10. Hansen, J. B., Oomen, A. G., Edelgaard, I., & Gron, C. (2007). Oral bioaccessibility and leaching: Tests for soil risk assessment. Engineering in Life Sciences, 7(2), 170–176. doi:10.1002/elsc.200620174.

  11. Harkey, G. A., Lydy, M. J., Kukkonen, J., & Landrum, P. F. (1994). Feeding selectivity and assimilation of PAH and PCB in Diporeia spp. Environmental Toxicology and Chemistry, 13(9), 1445–1455. doi:10.1897/1552-8618(1994)13[1445:FSAAOP]2.0.CO;2.

  12. Harvey, R. G. (1996). Polycyclic aromatic hydrocarbons pp. 21–39. New York: Wiley.

  13. Huang, W. L., & Weber, J. W. J. (1998). A distributed reactivity model for sorption by soil and sediments. 11. Slow concentration-dependent sorption rate. Environmental Science & Technology, 32(22), 3549–3555. doi:10.1021/es970764n.

  14. Jin, Z. W., Simkins, S., & Xing, B. S. (1999). Bioavailability of freshly added and aged naphthalene in soils under gastric pH condition. Environmental Toxicology and Chemistry, 18(12), 2751–2758. doi:10.1897/1551-5028(1999)018<2751:BOFAAA>2.3.CO;2.

  15. Khan, S., Cao, Q., Lin, A., & Zhu, Y. (2008). Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. Environmental Science and Pollution Research, 15, 344–353. doi:10.1007/s11356-008-0004-5.

  16. Kotzamnidis, C., Roukas, T., & Skaracis, G. (2002). Optimization of lactic acid production from beet molasses by Lactobacillus delbruekii NCIMB 8130. World Journal of Microbiology & Biotechnology, 18(5), 441–448. doi:10.1023/A:1015523126741.

  17. Lassen, P., & Carlsen, L. (1997). Solubilization of phenanthrene by humic acids. Chemosphere, 34(4), 817–825. doi:10.1016/S0045-6535(97)00010-6.

  18. Lu, R. K. (1999). Soil agriculture analytical method pp. 216–221. Beijing: China Agriculture Science and Technology Press.

  19. National Environmental Policy Institute (NEPI) (2000). Assessing the bioavailability of organic chemicals in soil for use in human health risk assessment. Washington, DC: National Environmental Policy Institute http://www.nepi.org/pubs/ Metalsinsoil.pdf.

  20. Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon and organic matter. method of soil analysis. Chemical and microbiological properties pp. 539–579. Madison: American Society of Agronomy.

  21. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion model to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36(15), 3326–3334. doi:10.1021/es010204v.

  22. Oomen, A. G., Rompelberg, C. J. M., Kamp, E. V., Perehoom, D. P. K. H., Zwart, L. L. D., & Slips, A. J. A. M. (2004). Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model. Archives of Environmental Contamination and Toxicology, 46(2), 183–188.

  23. Rastall, A. C., Neziri, A., Vukovic, Z., Jung, C., Mijovic, S., Hollert, H., et al. (2004). The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis. Environmental Science and Pollution Research, 11(4), 240–253.

  24. Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of Hazardous Materials, 140(1–2), 325–332. doi:10.1016/j.jhazmat.2006.09.035.

  25. Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33(4), 642–649. doi:10.1021/es980631h.

  26. Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R., Freeman, G. B., et al. (1993). Development of an in vitro screening test to evaluate the in vitro bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27(13), 2870–2877. doi:10.1021/es00049a030.

  27. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33(21), 3697–3705. doi:10.1021/es990479z.

  28. Schlautman, M. A., & Morgan, J. J. (1993). Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environmental Science & Technology, 27(5), 961–969. doi:10.1021/es00042a020.

  29. Sivakumar, R., Manohar, B., & Divakar, S. (2007). Synthesis of vanillyl-maltoside using glucosidases by response surface methodology. European Food Research and Technology, 226(1–2), 255–263. doi:10.1007/s00217-006-0534-3.

  30. Stapleton, M. G., Sparks, D. L., & Dental, S. K. (1994). Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH. Environmental Science & Technology, 28(13), 2330–2335. doi:10.1021/es00062a017.

  31. Tang, X. Y., Tang, L. L., Zhu, Y. G., Xing, B. S., Duan, J., & Zheng, M. H. (2006). Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environmental Pollution, 140(2), 279–285. doi:10.1016/j.envpol.2005.07.010.

  32. United States Environmental Protection Agency (1997). Exposure factors handbook. Vol I: General factors. Washington DC: United States Environmental Protection Agency.

  33. Vohra, A., & Satyanarayana, T. (2002). Statistical optimization of medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochemistry, 37(9), 999–1004. doi:10.1016/S0032-9592(01)00308-9.

  34. Wiele, T. R. V., Verstracete, W., & Siciliano, S. D. (2004). Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract. Journal of Environmental Quality, 33(4), 1343–1353.

  35. Yang, Y., Ratte, D., Smets, B. F., Pignatello, J. J., & Grasso, D. (2001). Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere, 43(8), 1013–1021. doi:10.1016/S0045-6535(00)00498-7.

  36. Ye, Z., Lu, M., Zheng, Y., Li, Y., & Cai, W. (2008). Lactic acid production from dining-hall food waste by Lactobacillus plantarum using response surface methodology. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 83(11), 1541–1550. doi:10.1002/jctb.1968.

Download references

Acknowledgments

The study was supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant 20060384007). Professor John Hodgkiss is thanked for his assistance with English.

Author information

Correspondence to D. Yuan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, M., Yuan, D., Li, Q. et al. Application of Response Surface Methodology to Analyze the Effects of Soil/Liquid Ratio, pH, and Incubation Time on the Bioaccessibility of PAHs from Soil in In Vitro Method. Water Air Soil Pollut 200, 387–397 (2009). https://doi.org/10.1007/s11270-008-9920-8

Download citation

Keywords

  • Bioaccessibility
  • Central composite design
  • In vitro
  • PAH
  • Response surface methodology