Water, Air, and Soil Pollution

, Volume 200, Issue 1–4, pp 277–288 | Cite as

Year-Round Observations of NO, NO2, O3, SO2, and Toluene Measured with a DOAS System in the Industrial Area of Puertollano, Spain

  • A. Saiz-Lopez
  • J. A. Adame
  • A. Notario
  • J. Poblete
  • J. P. Bolívar
  • J. AlbaladejoEmail author


We report observations of primary and secondary atmospheric pollutants such as nitrogen oxides, sulfur dioxide, toluene, and ozone during the period February 2002 to August 2003 in Puertollano, an industrial area located in central–southern Spain. The measurements were performed using a commercial differential optical absorption spectroscopy instrument. From the hourly data, we have analyzed the mean seasonal levels and the daily evolution and we have examined the occurrence of elevated pollution episodes. The daily cycles of NO, NO2, SO2, and toluene were characterized by an early-morning maximum whereas O3 peaks were monitored around noon. Seasonally, the highest hourly mean concentrations of NO, NO2, SO2, and toluene, 14.2, 27.0, 34.4, and 12.1 μg m−3 respectively, were found in the winter while O3 summer levels reached 119.1 μg m−3. The dataset presented here shows episodic occurrences of elevated concentrations that exceeded the maximum levels established in the European Directives. For instance, hourly values for SO2 were repeatedly measured above 350 μg m−3. During the period of measurements, the O3 thresholds (i.e., hourly value of 240 μg m−3) defined to protect the human health have also been exceeded numerous times. Finally, we investigate daily and seasonal patterns in pollution levels within the context of local meteorology and photochemistry, vehicular traffic, and industrial emissions.


DOAS Air quality Ozone SO2 Toluene NOx Puertollano 



The authors gratefully thank the Spanish Ministerio de Educación y Ciencia (Project No. CGL2004-03355/CLI), the Junta de Comunidades de Castilla-La Mancha (Project No. PAI-05-062), and the Junta de Andalucía (Project code FQM2065) for financial support of this research work.


  1. Adame, J. A., Lozano, A., Bolívar, J. P., De la Morena, B. A., Contreras, J., & Godoy, F. (2008). Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain). Chemosphere, 70, 841–849.CrossRefGoogle Scholar
  2. Atkinson, R. (1994). Gas-phase tropospheric chemistry of organic compounds. Journal of Physical Chemistry Reference Data, Monograph 2.Google Scholar
  3. Avery, G. B., Kieber, R. J., Witt, M., & Willey, J. D. (2006). Rainwater monocarboxylic and dicarboxylic acid concentrations in southeastern North Carolina, USA, as a function of air-mass back-trajectory. Atmospheric Environment, 40, 1683–1693. doi: 10.1016/j.atmosenv.2005.10.058.CrossRefGoogle Scholar
  4. Dueñas, C., Fernandez, M. C., Cañete, S., Carretero, J., & Liger, E. (2004). Analyses of ozone in urban and rural sites in Malaga (Spain). Chemosphere, 56, 631–639. doi: 10.1016/j.chemosphere.2004.04.013.CrossRefGoogle Scholar
  5. Evtyugina, M. G., Nunes, T., Pio, C., & Costa, C. S. (2006). Photochemical pollution under sea breeze conditions, during summer, at Portuguese West Coast. Atmospheric Environment, 40, 6277–6293. doi: 10.1016/j.atmosenv.2006.05.046.CrossRefGoogle Scholar
  6. Fuller, G. (2003) Air Quality in London. Final Report. The Eleventh Report of the London Air Quality Network.
  7. Gangoiti, G., Albizuri, A., Alonso, L., Navazo, M., Matabuena, M., Valdenebro, V., et al. (2006). Sub-continental transport mechanisms and pathways during two ozone episodes in Northern Spain. Atmospheric Chemistry and Physics, 6, 1469–1484.CrossRefGoogle Scholar
  8. García, M. A., Sánchez, M. L., Pérez, I. A., & De Torre, B. (2005). Ground level ozone concentrations at a rural location in northern Spain. The Science of the Total Environment, 348, 135–150. doi: 10.1016/j.scitotenv.2004.12.049.CrossRefGoogle Scholar
  9. Kalabokas, P. D., Viras, L. G., Bartzis, J. G., & Repapis, C. C. (2000). Mediterranean rural ozone characteristics around the urban area of Athens. Atmospheric Environment, 34, 5199–5208. doi: 10.1016/S1352-2310(00)00298-3.CrossRefGoogle Scholar
  10. Kourtidis, K. A., Ziomas, I., Zerefos, C., Kosmidis, E., Symeonidis, P., Christophilipoulos, E., et al. (2002). Benzene, toluene, ozone, NO2 and SO2 measurements in an urban street canyon in Thessaloniki, Greece. Atmospheric Environment, 36, 5355–5364. doi: 10.1016/S1352-2310(02)00580-0.CrossRefGoogle Scholar
  11. Martínez, E., Albaladejo, J., Notario, A., & Jimenez, E. (2000). A study of the atmospheric reaction of CH3S with O3 as a function of temperature. Atmospheric Environment, 34, 5295–5302. doi: 10.1016/S1352-2310(00)00348-4.CrossRefGoogle Scholar
  12. Millán, M., Salvador, R., Mantilla, E., & Kallos, G. (1997). Photooxidant dynamics in the Mediterranean basin in summer: Results from European Research projects. Journal of Geophysical Research, 102(D7), 8881–8823.CrossRefGoogle Scholar
  13. Millán, M., Sanz, M. J., Salvador, R., & Mantilla, E. (2002). Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean. Environmental Pollution, 118, 167–186. doi: 10.1016/S0269-7491(01)00311-6.CrossRefGoogle Scholar
  14. Plane, J. M. C., & Saiz-Lopez, A. (2006). UV-visible differential optical absorption spectroscopy (DOAS). In D. E. Heard (Ed.), Analytical techniques for atmospheric measurement. Oxford: Blackwell.Google Scholar
  15. Platt, U. (1994). Differential optical absorption spectroscopy (DOAS). In M. W. Sigrist (Ed.), Air monitoring by spectroscopy techniques. London: Wiley.Google Scholar
  16. Ribas, A., & Peñuelas, J. (2004). Temporal patterns of surface ozone levels in different habitats of the north western Mediterranean basin. Atmospheric Environment, 38, 985–992. doi: 10.1016/j.atmosenv.2003.10.045.CrossRefGoogle Scholar
  17. Riga-Karandino, A., & Saitanis, C. (2005). Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere, 59, 1125–1136. doi: 10.1016/j.chemosphere.2004.11.059.CrossRefGoogle Scholar
  18. Rodhe, H., Dentener, F., & Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science & Technology, 36, 4382–4388. doi: 10.1021/es020057g.CrossRefGoogle Scholar
  19. Saiz-Lopez, A., Notario, A., Albaladejo, J., & McFiggans, G. (2007). Seasonal variation of NOx loss processes coupled to the HNO3 formation in a daytime urban atmosphere: A model study. Water, Air, and Soil Pollution, 182, 197–206. doi: 10.1007/s11270-006-9332-6.CrossRefGoogle Scholar
  20. Saiz-Lopez, A., Notario, A., Martínez, E., & Albaladejo, J. (2006). Seasonal evolution of levels of gaseous pollutants in an urban area (Ciudad Real) in central–southern Spain: A DOAS study. Water, Air, and Soil Pollution, 171, 153–167. doi: 10.1007/s11270-005-9029-2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Saiz-Lopez
    • 1
  • J. A. Adame
    • 2
    • 3
  • A. Notario
    • 4
  • J. Poblete
    • 5
  • J. P. Bolívar
    • 3
  • J. Albaladejo
    • 5
    Email author
  1. 1.Earth and Space Science Division, NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Sounding Atmospheric StationEl Arenosillo—Instituto Nacional de Técnica Aeroespacial (INTA)MazagónSpain
  3. 3.Departamento de Física Aplicada, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain
  4. 4.Instituto de Tecnologías Química y Medioambiental (ITQUIMA), Universidad de Castilla-La ManchaCiudad RealSpain
  5. 5.Departamento de Química Física, Facultad de Ciencias QuímicasUniversidad de Castilla la ManchaCiudad RealSpain

Personalised recommendations