Water, Air, and Soil Pollution

, Volume 200, Issue 1–4, pp 119–132 | Cite as

Tracing the Metal Pollution History of the Tisza River Through the Analysis of a Sediment Depth Profile

  • H. L. Nguyen
  • M. Braun
  • I. Szaloki
  • W. Baeyens
  • R. Van Grieken
  • M. LeermakersEmail author


The vertical profiles of 20 major and trace metals were investigated along a 180-cm-long sediment core, which was sampled at Kiss-Janosne-Holt Tisza, an oxbow lake located in the upper part of the Tisza River in Hungary. The vertical profiles showed sharp peaks at different depths, reflecting historical pollution events and unusual changes of river water characteristics. Five different groups of metals, containing metals which were strongly correlated and showing a similar behaviour, could be distinguished by factor analysis. Six areas, with variable degrees and types of contamination, were classified in the sediment core with cluster analysis. The most polluted sections were found in the upper 50-cm part (significantly contaminated by Cu, Zn, Pb, Cd and Hg) and the deeper 100–120-cm part (characterised by high concentrations of metals associated with mining activities, such as Fe and Mn, as well as Cu, Zn and Pb). In recent years, important pollution events, such as the one which took place in March of 2000, were the reason for pollution of the upper sediment layers, whereas mining activities during the last century were responsible for the pollution of the deeper core sections.


Heavy metals Sediment core Pollution Tisza River 



We are very grateful to Bela Csapo, teacher of Tarpa Primary School, for his help during the sampling expedition. This research was funded by the Flemish Government and Hungarian Education Ministry through the Flemish–Hungarian Bilateral Scientific and Technological Co-operation under contract project Nr. B-00/76 and by the Flemish government through a grant for H. L. Nguyen.


  1. Appleby, P. G., & Oldfield, F. (1992). Application of lead-210 to sedimentation studies. Uranium-series disequilibrium applications to earth, marine and environmental sciences pp. 731–778. Oxford: Clarendon.Google Scholar
  2. Baciu, C. (2002). Issues concerning the Tisza basin in Romania. Budapest: Twining of River Basins Tisza-Scheldt.Google Scholar
  3. Baeyens, W., Meuleman, C., Muhaya, B., & Leermakers, M. (1998). Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia, 366, 63–79. doi: 10.1023/A:1003124310848.CrossRefGoogle Scholar
  4. Braun, M., Toth, A., Alapi, K., Devai, G., Lakatos, G., Posta, J., et al. (2000). Environmental history of oxbow ponds: A sediment geochemical study of Marot-Zugi-Holt-Tisza, NE Hungary. Ecology of River Valleys. TISCIA monograph series. Szeged., 133–138.Google Scholar
  5. Catallo, W. J., Schlenker, M., Gambrell, R. P., & Shane, B. S. (1995). Toxic-chemicals and trace-metals from urban and rural louisiana lakes—recent historical profiles and toxicological significance. Environmental Science & Technology, 29(6), 1436–1445. doi: 10.1021/es00006a003.CrossRefGoogle Scholar
  6. Ciszewski, D. (2003). Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water, Air, and Soil Pollution, 143(1–4), 81–98. doi: 10.1023/A:1022825103974.CrossRefGoogle Scholar
  7. Clark, M. (1985). A Fortran program for constrained sequence-slotting based on minimum combined path length. Computers & Geosciences, 11(5), 605–617.CrossRefGoogle Scholar
  8. Clark, M. (1995). INQUA working group on data-handling methods. Newsletter 13, January 1995. Depth-matching usinf PC-Slot version 1.6. (
  9. Clark, M. (1996). PC-SLOT. 1.7. Clayton, Australia: Monash University. doi: 10.1016/0098-3004(85)90089-5.
  10. Dauvalter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 42(1), 9–18. doi: 10.1016/S0045-6535(00)00094-1.CrossRefGoogle Scholar
  11. Delaune, R. D., Patrick, W. H., & Buresh, R. J. (1978). Sedimentation-rates determined by Cs-137 dating in a rapidly accreting salt-marsh. Nature, 275(5680), 532–533. doi: 10.1038/275532a0.CrossRefGoogle Scholar
  12. Fleit, E., & Lakatos, G. (2003). Accumulative heavy metal patterns in the sediment and biotic compartments of the Tisza watershed. Toxicology Letters, 140, 323–332. doi: 10.1016/S0378-4274(03)00029-8.CrossRefGoogle Scholar
  13. Forstner, U. (1990). Inorganic sediment chemistry and elemental speciation. Sediments: Chemistry and toxicity of in-place pollutants. Michigan: Lewis, (405 pp).Google Scholar
  14. Forstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer, (486 pp).Google Scholar
  15. Gallagher, K. A., Wheeler, A. J., & Orford, J. D. (1996). An assessment of the heavy metal pollution of two tidal marshes on the north-west coast of Ireland. Biology and Environment—Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 96B(3), 177–188.Google Scholar
  16. Gambrell, R. P., DeLaune, R. D., Patrick, W. H., & Jugsujinda, A. (2001). Mercury distribution in sediment profiles of six Louisiana Lakes. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(5), 661–676. doi: 10.1081/ESE-100103752.Google Scholar
  17. Gardner, A. (2000). Sequence-slotting recovers dating disasters. Newsletter of Inqua-Sub Commission on Data-Handling Methods. 20: (online access
  18. Godoy, J. M., Moreira, I., Wanderley, C., Simoes, F. F., & Mozeto, A. A. (1998). An alternative method for the determination of excess Pb-210 in sediments. Radiation Protection Dosimetry, 75(1–4), 111–115.Google Scholar
  19. Gordon, A. D. (1980). SLOTSEQ: A Fortran IV program for comparing two sequences of observations. Computers & Geosciences, 6, 7–20. doi: 10.1016/0098-3004(80)90003-5.CrossRefGoogle Scholar
  20. Hamar, J., & Sarkany-Kiss, A. (eds.) (1999). The Upper Tisza Valley. Tisza Monograph Series, Tisza Klub’s Publications, Szeged, pp. 502.Google Scholar
  21. Hungarian Ministry of Environment and Water. (2000). The limit values for the protection of quality of ground water resources and soils. Order No. 10/2000.Google Scholar
  22. Iskandar, I. K., & Keeney, D. R. (1974). Concentration of heavy-metals in sediment cores from selected Wisconsin Lakes. Environmental Science & Technology, 8(2), 165–170. doi: 10.1021/es60087a001.CrossRefGoogle Scholar
  23. Judith, K. (2001). Tisza river at risk. Archive report. Greenpeace.Google Scholar
  24. Knox, J. C. (1987). Historical valley floor sedimentation in the Upper Mississippi Valley. Annals of the Association of American Geographers. Association of American Geographers, 77(2), 224–244. doi: 10.1111/j.1467-8306.1987.tb00155.x.CrossRefGoogle Scholar
  25. Kudo, A., Fujikawa, Y., Mitui, M., Sugahara, M., Tao, G., Zheng, J., et al. (2000). History of mercury migration from Minamata Bay to the Yatsushiro Sea. Water Science and Technology, 42(7–8), 177–184.Google Scholar
  26. Laszlo, F., Csanyi, B., & Literathy, P. (2000). Cyanide and heavy metals accidental pollution in the Tisza river basin: Consequences on water quality monitoring and assessment. Monitoring Tailor-Made III International workshop on information for sustainable water management. Nunspeet, The Netherlands.Google Scholar
  27. Lee, S. V., & Cundy, A. B. (2001). Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England. Estuarine, Coastal and Shelf Science, 53(5), 619–636. doi: 10.1006/ecss.2000.0713.CrossRefGoogle Scholar
  28. Leermakers, M., Nguyen, H. L., Kurunczi, S., Vanneste, B., Galletti, S., & Baeyens, W. (2003). Determination of methylmercury in environmental samples using statitic headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation. Journal of Analytical and Bioanalytical Chemistry, 377, 327–333.CrossRefGoogle Scholar
  29. Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment—results from selected English and Welsh floodplains. Applied Geochemistry, 9(6), 689–700. doi: 10.1016/0883-2927(94)90028-0.CrossRefGoogle Scholar
  30. Nguyen, H. L., Leermakers, M., & Baeyens, W. (2004a). Heavy metals in the Lake Balaton: watercolumn, suspended matter, sediment and biota. The Science of the Total Environment, 340(1–3), 213–230. doi: 10.1016/j.scitotenv.2004.07.032.Google Scholar
  31. Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., & Baeyens, W. (2004b). Mercury distribution and speciation in Lake Balaton, Hungary. The Science of the Total Environment, 340, 231–246. doi: 10.1016/j.scitotenv.2004.08.016.Google Scholar
  32. Osan, J., Kurunczi, S., Török, S., & Van Grieken, R. (2002). X ray analysis of river sediment of the Tisza (Hungary): identification of particles from a mine pollution event. Spectrochimica Acta B, 57, 413–422. doi: 10.1016/S0584-8547(01)00405-0.CrossRefGoogle Scholar
  33. Osan, J., Török, S., Alföldy, B., Alsecz, A., Falkenberg, G., Baik, S. Y., et al. (2007). Comparison of sedimentary pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques. Spectrochimica Acta Part B, 62, 123–136. doi: 10.1016/j.sab.2007.02.005.CrossRefGoogle Scholar
  34. Park, J., & Presley, B. J. (1997). Trace metals contamination of sediments and organisms from the Swan Lake area of Galveston Bay. Environmental Pollution, 98(2), 209–221. doi: 10.1016/S0269-7491(97)00137-1.CrossRefGoogle Scholar
  35. Regnell, O., Hammar, T., Helgee, A., & Troedsson, B. (2001). Effects of anoxia and sulfide on concentrations of total and methyl mercury in sediment and water in two Hg-polluted lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 506–517. doi: 10.1139/cjfas-58-3-506.CrossRefGoogle Scholar
  36. Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle. Berlin: Springer, (349 pp).Google Scholar
  37. Schwarcz, H. P. (2002). Chronometric dating in archaeology: a review. Accounts of Chemical Research, 35(8), 637–643. doi: 10.1021/ar010039o.CrossRefGoogle Scholar
  38. VITUKI Water Resources Research Centre. (2003). Hydroinfo. June. 2003.
  39. Von Gunten, H. R., Sturm, M., & Moser, R. N. (1997). 200-year record of metals in lake sediments and natural background concentrations. Environmental Science & Technology, 31(8), 2193–2197. doi: 10.1021/es960616h.CrossRefGoogle Scholar
  40. Walker, D. (1964). A modified vallentyne mud sampler. Ecology, 45, 642–644. doi: 10.2307/1936118.CrossRefGoogle Scholar
  41. WWF. (2002). Ecological effects of mining spills in the Tisza River system in 2000. Report. WWF World Wildlife Fund International–Danube–Carpathian Programme, Vienna, Austria.Google Scholar
  42. Yang, H. D., & Rose, N. L. (2003). Distribution of mercury in six lake sediment cores across the UK. The Science of the Total Environment, 304(1–3), 391–404. doi: 10.1016/S0048-9697(02)00584-3.CrossRefGoogle Scholar
  43. Ying, Q. Y., Higman, J., Thompson, J., O’Toole, T., & Campbell, D. (2002). Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin. Journal of Contaminant Hydrology, 54(1–2), 19–35. doi: 10.1016/S0169-7722(01)00162-0.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. L. Nguyen
    • 1
    • 4
  • M. Braun
    • 2
  • I. Szaloki
    • 3
  • W. Baeyens
    • 1
  • R. Van Grieken
    • 5
  • M. Leermakers
    • 1
    Email author
  1. 1.Department of Analytical and Environmental ChemistryVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Inorganic ChemistryUniversity of DebrecenDebrecenHungary
  3. 3.Department of Nuclear TechniquesBudapest University of Technology and EconomicsBudapestHungary
  4. 4.Faculty of Chemical TechnologyHanoi University of TechnologyHanoiVietnam
  5. 5.Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations