Water, Air, and Soil Pollution

, Volume 200, Issue 1–4, pp 59–77 | Cite as

Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review

  • Mojdeh Owlad
  • Mohamed Kheireddine Aroua
  • Wan Ashri Wan Daud
  • Saeid Baroutian


Cr(VI) is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. This article includes a survey of removal techniques for Cr(VI)-contaminated aqueous solutions. A particular focus is given to adsorption, membrane filtration, ion exchange, and electrochemical treatment methods. The primary objective of this article is to provide recent information about the most widely used techniques for Cr(VI) removal.


Cr(VI) Chromium removal Water pollution control 


  1. Aggarwal, D., Goyal, M., & Bansal, R. C. (1999). Adsorption of chromium by activated carbon from aqueous solution. Carbon, 37(12), 1989–1997. doi: 10.1016/S0008-6223(99)00072-X.CrossRefGoogle Scholar
  2. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79.Google Scholar
  3. Alaerts, G. J., Jitjaturant, V., & Kelderman, P. (1989). Use of coconut shell-based activated carbon for chromium (VI) removal. Water Science and Technology, 21(12), 1701–1704.Google Scholar
  4. Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. (2005). Kinetic modeling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science, 286(1), 101–109. doi: 10.1016/j.jcis.2004.12.043.CrossRefGoogle Scholar
  5. Aoki, T., & Munemori, M. (1982). Recovery of Cr (VI) from wastewater with Iron (III) Hydroxide: I. Adsorption mechanism of Cr (VI) on Iron (III) hydroxide. Water Research, 16, 793–796. doi: 10.1016/0043-1354(82)90006-9.CrossRefGoogle Scholar
  6. Araki, T., & Tsukube, H. (1990). Liquid Membranes: Chemical Applications CRC Press, pp. 35–36.Google Scholar
  7. Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85. doi: 10.1016/j.jhazmat.2006.06.095.CrossRefGoogle Scholar
  8. Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. doi: 10.1016/j.jhazmat.2007.01.120.CrossRefGoogle Scholar
  9. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1–3), 219–243. doi: 10.1016/S0304-3894(02)00263–7.CrossRefGoogle Scholar
  10. Babel, S., & Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54(7), 951–967. doi: 10.1016/j.chemosphere.2003.10.001.CrossRefGoogle Scholar
  11. Baral, S. S., Das, S. N., & Rath, P. (2006). Cr(VI) removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31(3), 216–222. doi: 10.1016/j.bej.2006.08.003.CrossRefGoogle Scholar
  12. Barnowski, C., Jakubowski, N., Stuewer, D., & Broekaert, J. A. C. (1997). Speciation of chromium by direct coupling of ion exchange chromatography with ICP-MS. At. Spectrom, 1155(12), 1155–1161. doi: 10.1039/a702120h.CrossRefGoogle Scholar
  13. Basso, M. C., Cerrella, E. G., & Cukierman, A. L. (2002). Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Industrial & Engineering Chemistry Research, 41(15), 3580–3585. doi: 10.1021/ie020023h.CrossRefGoogle Scholar
  14. Berkeley, R. C. W. (1979). Chitin, Chitosan and Their Degradative Enzymes. In R. C. W. Berkeley, C. W. Gooday, & D. C. Elwood (Eds.), Microbial polysaccharides (pp. 205–236). New York: Academic Press.Google Scholar
  15. Bohdziewicz, J. (2000). Removal of chromium ions (VI) from underground water in the hybrid complexation-ultrafiltration process. Desalination, 129(3), 227–235. doi: 10.1016/S0011-9164(00)00063-1.CrossRefGoogle Scholar
  16. Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916. doi: 10.1016/S0043–1354(00)00152–4.CrossRefGoogle Scholar
  17. Candela, M. P., Martinez, J. M., & Macia, R. T. (1995). Chromium (VI) removal with activated carbons. Water Research, 29(9), 2174–2180. doi: 10.1016/0043–1354(95)00035-J.CrossRefGoogle Scholar
  18. Chaiyasith, S., Chaiyasith, P., & Septhu, C. (2006). Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand. Thammasat International Journal of Science and Technology, 1l(2), 13–20.Google Scholar
  19. Chaudry, M. A., Ahmad, S., & Malik, M. T. (1997). Supported liquid membrane (SLM) technique applicability for the speciation of chromium from tannery wastes. Waste Management (New York, N.Y.), 17(4), 211–218. doi: 10.1016/S0956-053X(97)10007-1.Google Scholar
  20. Chiha, M., Samar, M. H., & Hamdaoui, O. (2006). Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination, 194(1–3), 69–80. doi: 10.1016/j.desal.2005.10.025.CrossRefGoogle Scholar
  21. Chingombe, P., Saha, B., & Wakeman, R. J. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15), 3132–3143. doi: 10.1016/j.carbon.2005.06.021.CrossRefGoogle Scholar
  22. Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34(11), 2955–2962. doi: 10.1016/S0043–1354(00)00048–8.CrossRefGoogle Scholar
  23. Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of Cr(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6(4), 533–540. doi: 10.1016/S1093–0191(01)00079-X.CrossRefGoogle Scholar
  24. Davis, A. P., Bernstein, C., & Gietka, P. M. (1995). Waste minimization in electropolishing: Process control. In Arup K. Sengupta (Ed.), Proceedings of the Twenty-Seventh Mid-Atlantic Industrial Waste Conference: Hazardous and industrial wastes (pp. 62–71). Lancaster: Technomic Publishing.Google Scholar
  25. Demirbas, A. (2008). Heavy metal adsorption onto agro based waste materials: A review. Journal of Hazardous Materials, 157(2–3), 220–229. doi: 10.1016/j.jhazmat.2008.01.024.CrossRefGoogle Scholar
  26. Djane, N. K., Ndung’u, K., Johnsson, C., Sartz, H., Tornstrom, T., & Mathiasson, L. (1999). Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta, 48(5), 1121–1132. doi: 10.1016/S0039-9140(98)00334-8.CrossRefGoogle Scholar
  27. Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145(3), 465–470.CrossRefGoogle Scholar
  28. Dzyazko, Y. S., Mahmud, A., Lapicque, F., & Belyakov, V. N. (2007). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209–217.CrossRefGoogle Scholar
  29. Esmaeili, A., Mesdaghi nia, A., & Vazirinejad, R. (2005). Chromium (III) removal and recovery from tannery wastewater by precipitation process. American Journal of Applied Sciences, 2(10), 1471–1473.CrossRefGoogle Scholar
  30. Gaballah, I., Goy, D., Allain, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Met. Metall. Trans B, 28(1), 13–23.CrossRefGoogle Scholar
  31. Gardea-Torresdey, J. L., de la Rosa, G., & Peralta-Videa, J. R. (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Applied Chemistry, 76(4), 801–813.CrossRefGoogle Scholar
  32. Gil, R. A., Cerutti, S., G’asquez, J. A., Olsina, R. A., & Martinez, L. D. (2006). Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination. Talanta, 1065(68), 1065–1070.CrossRefGoogle Scholar
  33. Gupta, V. K., Morhan, D., Sharma, S., & Park, K. T. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist, 19(2), 129–136.CrossRefGoogle Scholar
  34. Hafiane, A., Lemordant, D., & Dhahbi, M. (2000). Removal of Cr(VI) by nanofiltration. Desalination, 130(3), 305–312.CrossRefGoogle Scholar
  35. Hamadi, N. K., Chen, X. D., Farid, M. M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84(2), 95–105.CrossRefGoogle Scholar
  36. Han, I., Schlautman, M. A., & Batchelor, B. (2000). Removal of Cr(VI) from Groundwater by Granular Activated Carbon. Water Environment Research, 72(1), 29–39.CrossRefGoogle Scholar
  37. Hashem, A., Akasha, R. A., Ghith, A., & Hussein, D. A. (2007). Adsorbent based on agricultural wastes for heavy metal and dye removal. A review. Energy Edu. Sci. Technol, 19, 69–86.Google Scholar
  38. Hu, Z., Lei, L., Li, Y., & Ni, Y. (2003). Chromium adsorption on high-performance activated carbons from aqueous solution. Sep. Purif. Technol, 31(1), 13–18.CrossRefGoogle Scholar
  39. Huang, C. P., & Wu, M. H. (1975). Chromium removal by carbon adsorption. J. Water Pollut. Control Federation, 47(10), 2437–2446.Google Scholar
  40. Jancuk, W. A., & Fisher, J. R. (1995). Research laboratory wastewater treatment process. In Arup. K. Sengupta (Ed.), Proceedings of the Twenty-Seventh Mid-Atlantic Industrial Waste Conference: Hazardous and industrial wastes (pp. 405–413). Lancaster: Technomic Publishing.Google Scholar
  41. Janssen, L. J. J., & Koene, L. (2002). The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 85(2–3), 137–146.CrossRefGoogle Scholar
  42. Kabay, N., Arda, M., Saha, B., & Streat, M. (2003). Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. Reactive & Functional Polymers, 54(1–3), 103–115.CrossRefGoogle Scholar
  43. Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials, 124(1–3), 192–199.CrossRefGoogle Scholar
  44. Katz, F., & Slem, H. (1994). The biological and environmental chemistry of chromium (pp. 51–58). New York: VCH.Google Scholar
  45. Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. A. (1999). Critical Assessment of Chromium in the Environment Critical Reviews in Environmental Science and Technology. Critical Reviews in Environmental Science and Technology, 29(1), 1–46.CrossRefGoogle Scholar
  46. Kinoshita, K. (1988). Carbon electrochemical and physicochemical properties. New York: Wiley.Google Scholar
  47. Kiptoo, J. K., Ngila, J. C., & Sawula, G. M. (2004). Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta, 64(1), 54–59.CrossRefGoogle Scholar
  48. Kobya, M. (2004). Adsorption, Kinetic and Equilibrium Studies of Cr(VI) by Hazelnut Shell Activated Carbon. Adsorption Science & Technology, 22(1), 51–64.CrossRefGoogle Scholar
  49. Kongsricharoern, N., & Polprasert, C. (1995). Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Science and Technology, 31(9), 109–117.CrossRefGoogle Scholar
  50. Kongsricharoern, N., & Polprasert, C. (1996). Chromium removal by a bipolar electrochemical precipitation process. Water Science and Technology, 34(9), 109–116.CrossRefGoogle Scholar
  51. Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3), 263–283.CrossRefGoogle Scholar
  52. Kratochvil, D., Pimentel, P., & Volesky, B. (1998). Removal of trivalent and Cr(VI) by seaweed biosorbent. Environmental Science & Technology, 32(18), 2693–2698.CrossRefGoogle Scholar
  53. Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. J. Trends Biotechnol, 16(7), 291–300.CrossRefGoogle Scholar
  54. Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98.Google Scholar
  55. Lee, H. S., & Volesky, B. (1997). Interaction of light metals and protons with seaweed biosorbent. Water Research, 31(12), 3082–3088.CrossRefGoogle Scholar
  56. Lee, M. Y., Hong, K. J., Shin-Ya, Y., & Kajiuchi, T. (2005). Adsorption of Cr(VI) by chitosan-based polymeric surfactants. Journal of Applied Polymer Science, 96(1), 44–50.CrossRefGoogle Scholar
  57. Li, N. N., Calo, J. M. (1992). Separation and purification technology. CRC Press, pp. 198–199.Google Scholar
  58. Lin, S. H., & Kiang, C. D. (2003). Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chemical Engineering Journal, 92(1–3), 193–199.CrossRefGoogle Scholar
  59. Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., & Wang, H. L. (2007). Activated carbon with excellent chromium(VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials, 141(1), 315–319.CrossRefGoogle Scholar
  60. Martinez, S. A., Rodriguez, M. G., Aguolar, R., Soto, G. (2004). Removal of chromium hexavalent from rinsing chromating waters electrochemicals reduction in a laboratory pilot plant. Water Science and Technology, 49(1), 115–122.Google Scholar
  61. Mittal, A., Krishnan, L., & Gupta, V. K. (2005). Removal and recovery of malachite green from wastewater using an agricultural waste material. Sep. Purif. Technol, 43(2), 125–133.CrossRefGoogle Scholar
  62. Mohan, D., & Pittman, C. U. Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri- and Cr(VI) from water. Journal of Hazardous Materials, 137(2), 762–811.CrossRefGoogle Scholar
  63. Mohan, D., Singh, K. P., & Singh, V. K. (2005). Removal of Cr(VI) from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial & Engineering Chemistry Research, 44(4), 1027–1042.CrossRefGoogle Scholar
  64. Mohanty, K., Jha, M., Meikap, B. C., & Biswas, M. N. (2005). Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science, 60(11), 3049–3059.CrossRefGoogle Scholar
  65. Muthukrishnan, M., & Guha, B. K. (2008). Effect of pH on rejection of Cr(VI) by Nanofiltration. Desalination, 219(1–3), 171–178.CrossRefGoogle Scholar
  66. Nakajima, A., & Sakaguchi, T. (1990). Recovery and removal of uranium by using plant wastes. Biomass, 21, 55–63.CrossRefGoogle Scholar
  67. Namasivayam, C., & Ranganathan, K. (1993). Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater. Environmental Pollution, 82(3), 255–261.CrossRefGoogle Scholar
  68. Natale, F. D., Lancia, A., Molino, A., Musmarra, D. (2007). Removal of chromium ions from aqueous solutions by adsorption on activated carbon and char. Journal of Hazardous Materials, 145(3), 381–390.Google Scholar
  69. Nomanbhay, S. M. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 43–53.CrossRefGoogle Scholar
  70. Onyancha, D., Mavura, W., Ngila, J. C., Ongoma, P., & Chacha, J. (2008). Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. Journal of Hazardous Materials, 158(2–3), 605–614.CrossRefGoogle Scholar
  71. Pagnanelli, F., Mainelli, S., Veglio, F., & Toro, L. (2003). Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modeling. Chemical Engineering Science, 58(20), 4709–4717.CrossRefGoogle Scholar
  72. Park, S. J., & Jung, W. Y. (2001). Removal of chromium by activated carbon fibers plated with copper metal. Carbon Science, 2(1), 15–21.Google Scholar
  73. Park, D., Yun, Y. S., Jo, J. H., & Park, J. M. (2006). Biosorption process for treatment of electroplating wastewater containing Cr(VI): Laboratory-scale feasibility test. Industrial & Engineering Chemistry Research, 45(14), 5059–5065.CrossRefGoogle Scholar
  74. Pehlivan, E., & Altun, T. (2008). Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials, 155(1–2), 378–384.CrossRefGoogle Scholar
  75. Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of Cr(VI) from aqueous solution by using activated RedMud. Journal of Colloid and Interface Science, 217(1), 137–141.CrossRefGoogle Scholar
  76. Pugazhenthi, G., Sachan, S., Kishore, N., & Kumar, A. (2005). Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. Journal of Membrane Science, 254(1–2), 229–239.CrossRefGoogle Scholar
  77. Rana, P., Mohan, N., & Rajagopal, C. (2004). Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Research, 38(12), 2811–2820.CrossRefGoogle Scholar
  78. Ravikumar, K., Deebika, B., & Balu, K. (2005). Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis. Journal of Hazardous Materials, 122(1–2), 75–83.CrossRefGoogle Scholar
  79. Ruthven, D. M. (1984). Principles of adsorption and adsorption process. New York: Wiley.Google Scholar
  80. Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of Cr(VI) using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382.Google Scholar
  81. Sapari, N., Idris, A., & Hisham, N. (1996). Total removal of heavy metal from mixed plating rinse wastewater. Desalination, 106(1–3), 419–422.Google Scholar
  82. Schmuhl, R., Krieg, H. M., & Keizer, K. (2001). Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies. Water. S.A., 27(1), 1–7.Google Scholar
  83. Selomulya, C., Meeyoo, V., & Amal, R. (1999). Mechanisms of Cr(VI) removal from water by various types of activated carbons. Journal of Chemical Technology and Biotechnology, 74(2), 111–122.CrossRefGoogle Scholar
  84. Sharma, D. C., & Forster, C. F. (1996). Removal of hexavalent chromium from aqueous solutions by granular activated carbon. Water S.A., 22(2), 153–160.Google Scholar
  85. Song, Z., Williams, C. J., & Edyvean, R. G. J. (2000). Sedimentation of tannery wastewater. Water Research, 34(7), 2171–2176.CrossRefGoogle Scholar
  86. Spinelli, V. A., Laranjeira, M. C. M., Fa’vere, V. T. (2004). Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium(VI) ion. Reactive & Functional Polymers, 61(3), 347–352.CrossRefGoogle Scholar
  87. Srivastava, S. K., Gupta, V. K., & Mohan, D. (1997). Removal of lead and chromium by activated slag—A blast-furnace waste. Journal of Environmental Engineering, 123(5), 461–468.CrossRefGoogle Scholar
  88. Srivastava, S. K., Pant, N., & Pal, N. (1987). Studies on the efficiency of a local fertilizer waste as a low cost adsorbent. Wat. Res, 21(11), 1389–1394.CrossRefGoogle Scholar
  89. Srivastava, S. K., Tyagi, R., & Pant, N. (1989). Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Research, 23(9), 1161–1165.CrossRefGoogle Scholar
  90. Suzuki (1990). Adsorption Engineering, Elsevier, Amsterdam, (37–39).Google Scholar
  91. Tobin, J. M., & Roux, J. C. (1998). Mucor biosorbent for chromium removal from tanning effluent. Wat. Res., 32(5), 1407–1416.CrossRefGoogle Scholar
  92. Tukaram Bai, M., venkata Ratman, M., Subba Rao, D., Venkateswarlu, P. (2005). Removal of chromium from wastewater by adsorption with used coffee powder, In: Vibhuti N Misra, VibhutiGoogle Scholar
  93. Udaybhaskar, P., Iyengar, L., & Rao, A. V. S. P. (1990). Cr(VI) interaction with chitosan. Journal of Applied Polymer Science, 39(3), 739–747.CrossRefGoogle Scholar
  94. Venitt, S., & Levy, L. S. (1974). Mutagenicity of chromates in bacteria and its relevances to chromate carcinogenesis. Nature, 250(5466), 493–495.CrossRefGoogle Scholar
  95. Vigneswaran, S., Ngo, H. H., Chaudhary, D. S., & Hung, Y. T. (2004). Physico–chemical treatment processes for water reuse. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes, vol. 3 (pp. 635–676). New Jersey: Humana Press.Google Scholar
  96. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216.CrossRefGoogle Scholar
  97. Volesky, B. (2003). Sorption and Biosorption, Montreal-St. Lambert, Quebec, Canada. BV Sorbex Inc., 11, 258–263.Google Scholar
  98. Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250.CrossRefGoogle Scholar
  99. World Health Organization (WHO) (2004). Guidelines for drinking-water quality (third ed.). Recommendations. WHO, Geneva, 1, 334–335.Google Scholar
  100. Xu, Y., Xiao, H., & Sun, S. (2005). Study on anaerobic treatment of wastewater containing hexavalent chromium. Journal of Zhejiang University Science, 6(6), 574–579.CrossRefGoogle Scholar
  101. Yang, T. C., & Zall, R. R. (1984). Absorption of metals by natural polymers generated from seafood processing wastes. Industrial & Engineering Chemistry Product Research and Development, 23(1), 168–172.CrossRefGoogle Scholar
  102. Yilmaz, A., Kaya, A., Alpoguz, H. K., Ersoz, M., & Yilmaz, M. (2008). Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxaoctylamide derivative. Separation and Purification Technology, 59(1), 1–8.CrossRefGoogle Scholar
  103. Yin, C. Y., Aroua, M. K., & Wan Daud, W. M. A. (2007). Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 52(3), 403–415.CrossRefGoogle Scholar
  104. Zhao, N., Na, W., Li, J., Qiao, Z., Jing, C., & Fei, H. (2005). Surface properties of chemically modified activated carbons for adsorption rate of Cr(VI). Chemical Engineering Journal, 115(1–2), 133–138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mojdeh Owlad
    • 1
  • Mohamed Kheireddine Aroua
    • 1
  • Wan Ashri Wan Daud
    • 1
  • Saeid Baroutian
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity MalayaKuala LumpurMalaysia

Personalised recommendations