Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sediment–Water Interactions of Bisphenol A Under Simulated Marine Conditions

  • 216 Accesses

  • 17 Citations

Abstract

The sorption behavior of bisphenol A (BPA) on marine sediments treated using different methods was investigated in batch equilibrium experiments. Adsorption isotherms were well fitted to Freundlich model and the model parameters, K F and n, had been evaluated. When temperature decreased from 308 to 288 K, Freundlich constant (K F) increased about 200%. K F increased by approximately 92.6% with increase of salinity from 1:2 artificial seawater (1:2 ASW) to ASW conditions. The plateau sorption capacity was around 0.8579 mg/g in the pH range 7.46–8.34, whereas the adsorption capacity decreased from 0.8579 to 0 mg/g when pH from 8.34 to 8.91, suggesting that the undissociated species were adsorbed more readily and that electrostatic repulsion may inhibit sorption as pH increases. The increase of K F value between the two media from natural seawater to ASW was around 25.3%, indicating the presence of dissolved organic matter appeared to have a significant effect on sorption. Mineral surface of sediment, together with microporosity of sediment, showed to be primarily responsible for the sorption of BPA.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bautista-Toledo, I., Ferro-Garcia, M. A., Rivera-Utrilla, J., Moreno-Castilla, C., & Vegas Fernández, F. J. (2005). Bisphenol A removal from water by activated carbon. effects of carbon characteristics and solution chemistry. Environmental Science & Technology, 39, 6246–6250. doi:10.1021/es0481169.

  2. Bolz, U., Hagenmaier, H., & Körner, W. (2001). Phenolic zenoestrogens in surface water, sediments, and sewage sludge from Baden-Württemberg, south-west Germany. Environmental Pollution, 115, 291–301. doi:10.1016/S0269-7491(01)00100-2.

  3. Burkhard, L. P. (2000). Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environmental Science & Technology, 34, 4663–4668. doi:10.1021/es001269l.

  4. Cai, Y., Jiang, G. B., Liu, J. F., & Zhou, Q. X. (2003). Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of BPA, 4-n-nonylphenol, and 4-tert-octylphenol. Analytical Chemistry, 75, 2517–2521. doi:10.1021/ac0263566.

  5. Chiou, C. T., Kile, D. E., Rutherford, D. W., Sheng, G., & Boyd, S. A. (2000). Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environmental Science & Technology, 34, 1254–1258. doi:10.1021/es990261c.

  6. Clara, M., Strenn, B., Saracevic, E., & Kreuzinger, N. (2004). Adsorption of bisphenol-A, 17β-estradiole and 17α-ethinylestradiole to sewage sludge. Chemosphere, 56, 843–851. doi:10.1016/j.chemosphere.2004.04.048.

  7. Cornelissen, G., Gustafsson, O., Bucheli, T. D., Jonker, M. T. O., Koelmans, A. A., & Van-Noort, P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology, 39, 6881–6895. doi:10.1021/es050191b.

  8. Dantuono, A., Dallorto, V. C., Balbo, A. L., Sobral, S., & Rezzano, I. (2001). Determination of BPA in food-simulating liquids using LCED with a chemically modified electrode. Journal of Agricultural and Food Chemistry, 49, 1098–1101. doi:10.1021/jf000660n.

  9. Dorn, P. B., Chou, C., & Gentempo, J. J. (1987). Degradation of bisphenol A in natural waters. Chemosphere, 16, 1501–1507. doi:10.1016/0045-6535(87)90090-7.

  10. Fent, G., Hein, W. J., Moendel, M. J., & Kubiak, R. (2003). Fate of 14C-bisphenol A in soils. Chemosphere, 51, 735–746. doi:10.1016/S0045-6535(03)00100-0.

  11. Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J. A., & Wenzel, (2002). Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 36, 1429–1438. doi:10.1016/S0043-1354(01)00367-0.

  12. González-Pradas, E., Socías-Viciana, M., Ureña-Amate, M. D., Cantos-Molina, A., & Villafranca-Sánchez, M. (2005). Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites. Water Research, 39, 1849–1857. doi:10.1016/j.watres.2005.03.001.

  13. Heemken, O. P., Reincke, H., Stachel, R., & Theobald, N. (2001). The occurrence of xenoestrogens in the Elbe River and the North Sea. Chemosphere, 45, 245–259. doi:10.1016/S0045-6535(00)00570-1.

  14. Herwig, U., Klumpp, E., Narres, H.-D., & Schwuger, M. J. (2001). Physicochemical interactions between atrazine and clay minerals. Applied Clay Science, 18, 211–222. doi:10.1016/S0169-1317(01)00024-2.

  15. Howard, P. H. (1989). Handbook of environmental fate and exposure. Data, vol. 1. Chelsea: Lewis.

  16. Hu, J. Y., Yuan, T., & Ong, S. L. (2003). Identification and quantification of BPA by gas chromatography and mass spectrometry in a lab-scale dual membrane system. Journal of Environmental Monitoring, 5, 141–144. doi:10.1039/b207201g.

  17. Jing, X. L., Jiang, G. B., & Huang, G. (2004). Determination of 4-tertoctylphenol, 4-nonylphenol and BPA in surface waters from the Haihe River in tianjin by gas chromatography-mass spectrometry with selected ion monitoring. Chemosphere, 56, 1113–1119. doi:10.1016/j.chemosphere.2004.04.052.

  18. Kang, J. H., & Kondo, F. (2002). Effects of bacterial counts and temperature on the biodegradation of BPA in river water. Chemosphere, 49, 493–498. doi:10.1016/S0045-6535(02)00315-6.

  19. Kang, J. H., & Kondo, F. (2005). Bisphenol A degradation in river water is different from that in seawater. Chemosphere, 60, 1288–1292. doi:10.1016/j.chemosphere.2005.01.058.

  20. Kang, J.-H., Kondo, F., & Katayama, Y. (2006). Human exposure to bisphenol A. Toxicology, 226, 79–89. doi:10.1016/j.tox.2006.06.009.

  21. Koh, C.-H., Khim, J. S., Villeneuve, D. L., Kannan, K., & Giesy, J. P. (2006). Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 1. Instrumental analyses. Environmental Pollution, 142, 39–47. doi:10.1016/j.envpol.2005.09.005.

  22. Kopinke, F.-D., Georgi, A., & Mackenzie, K. (2001). Sorption of pyrene to dissolved humic substances and related model polymers: 1. Structure–property correlation. Environmental Science & Technology, 35, 2536–2542. doi:10.1021/es000233q.

  23. Krishnan, A. V., Starhis, P., & Permuth, S. F. (1993). Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279–2286. doi:10.1210/en.132.6.2279.

  24. Kuklenyik, Z., Ekong, J., Cutchins, C. D., Needham, L. L., & Calafat, A. M. (2003). Simultaneous measurement of urinary BPA and alkylphenols by automated solid-phase extractive derivatization gas chromatography/mass spectrometry. Analytical Chemistry, 75, 6820–6825. doi:10.1021/ac0303158.

  25. Lee, S.-J., Kim, J.-H., Chang, Y.-C., & Moon, M.-H. (2006). Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans in different particle size fractions of marine sediments. Environmental Pollution, 144, 554–561. doi:10.1016/j.envpol.2006.01.040.

  26. Liu, Z. F., & Lee, C. (2007). The role of organic matter in the sorption capacity of marine sediments. Marine Chemistry, 105, 240–257. doi:10.1016/j.marchem.2007.02.006.

  27. Long, F. A., & McDevit, W. F. (1951). Activity coefficients of non-electrolyte solutes in aqueous salt solutions. Chemical Reviews, 51, 119–169. doi:10.1021/cr60158a004.

  28. Mayer, L. M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271–1284. doi:10.1016/0016-7037(94)90381-6.

  29. Mayer, L. M. (1999). Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochimica et Cosmochimica Acta, 63, 207–215. doi:10.1016/S0016-7037(99)00028-9.

  30. Means, J. C. (1995). Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Marine Chemistry, 51, 3–16. doi:10.1016/0304-4203(95)00043-Q.

  31. Means, J. C., & Wijayaratne, R. (1982). Role of natural colloids in the transport of hydrophobic pollutants. Science, 215, 968–970. doi:10.1126/science.215.4535.968.

  32. Meesters, R. J. W., & Schroder, H. F. (2002). Simultaneous determination of 4-nonylphenol and BPA in sewage sludge. Analytical Chemistry, 74, 3566–3574. doi:10.1021/ac011258q.

  33. Meier, L. P., Nueesch, R., & Madsen, F. T. (2001). Organic pillared clays. Journal of Colloid and Interface Science, 238, 24–32. doi:10.1006/jcis.2001.7498.

  34. Murphy, E. M., Zachara, J. M., & Smith, S. C. (1990). Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science & Technology, 24, 1507–1516. doi:10.1021/es00080a009.

  35. Nakanishi, A., Tamai, M., Kawasaki, N., Nakamura, T., & Tanada, S. (2002). Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste. Journal of Colloid and Interface Science, 252, 393–396. doi:10.1006/jcis.2002.8387.

  36. Pignatello, J. J., & Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology, 30, 1–11. doi:10.1021/es940683g.

  37. Preston, M. R., & Al-Omran, L. A. (1986). Dissolved and particulate phthalate esters in the River Mersey Estuary. Marine Pollution Bulletin, 17, 548–553. doi:10.1016/0025-326X(86)90568-0.

  38. Rogers, R. D., McFarlane, J. C., & Cross, A. J. (1980). Adsorption and desorption of benzene in two soils and montmorillonite clay. Environmental Science & Technology, 14, 457–460. doi:10.1021/es60164a005.

  39. Satterberg, J., Amarson, T. S., Lessard, E. J., & Keil, R. G. (2003). Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite and kaolinite in seawater. Marine Chemistry, 81, 11–18. doi:10.1016/S0304-4203(02)00136-6.

  40. Shareef, A., Michael, , Angove, J., Wells, J. D., & Johnson, B. B. (2006). Sorption of bisphenol A, 17α-ethynylestradiol and estrone to mineral surfaces. Journal of Colloid and Interface Science, 297, 62–69. doi:10.1016/j.jcis.2005.10.039.

  41. Staples, C. A., Dorn, P. B., Klecka, G. M., O’Block, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36, 2149–2173. doi:10.1016/S0045-6535(97)10133-3.

  42. Sullivan, K. F., Atlas, E. L., & Giam, C. S. (1982). Adsorption of phthalic acid esters from seawater. Environmental Science & Technology, 16, 428–432. doi:10.1021/es00101a012.

  43. Takano, S., Yaguchi, K., & Yasuda, K. (2004). Environmental fate of BPA and its biological metabolites in river water and their xeno-estrogenic activity. Environmental Science & Technology, 38, 2389–2396. doi:10.1021/es030576z.

  44. Thimsen, C. A., & Keil, R. G. (1998). Potential interactions between sedimentary dissolved organic matter and mineral surfaces. Marine Chemistry, 62, 65–76. doi:10.1016/S0304-4203(98)00018-8.

  45. Tremblay, L., Kohl, S. D., Rice, J. A., & Gagné, J.-P. (2005). Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Marine Chemistry, 96, 21–34. doi:10.1016/j.marchem.2004.10.004.

  46. Tsai, W.-T., Lai, C.-W., & Su, T.-Y. (2006). Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials, 134, 169–175. doi:10.1016/j.jhazmat.2005.10.055.

  47. Wang, L., Sun, H. W., Wu, Y. H., & Xin, Y. (2008). Effect of sorbed nonylphenol on sorption of phenanthrene onto mineral surface. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.04.115 (in press).

  48. Wu, P., Yang, G.-P., & Zhao, X.-K. (2003). Sorption behavior of 2,4-dichlorophenol on marine sediments. Journal of Colloid and Interface Science, 265, 251–256. doi:10.1016/S0021-9797(03)00515-0.

  49. Xu, X.-R., & Li, X.-Y. (2008). Adsorption behaviour of dibutyl phthalate on marine sediments. Marine Pollution Bulletin, 57, 403–408. doi:10.1016/j.marpolbul.2008.01.023.

  50. Xu, X.-R., Wang, Y.-X., & Li, X.-Y. (2008). sorption behavior of bisphenol A on marine sediments. Journal of Environmental Science and Health. Part A, 43, 239–246.

  51. Yamamoto, T., & Yasuhara, A. (1998). Quantities of bisphenol A leached from plastic waste samples. Chemosphere, 38, 2569–2576. doi:10.1016/S0045-6535(98)00464-0.

  52. Yamamoto, T., Yasuhara, A., Shiraishi, H., & Nakasugi, O. (2001). Bisphenol A in hazardous waste landfill leachates. Chemosphere, 42, 415–418. doi:10.1016/S0045-6535(00)00079-5.

  53. Yang, G. P., & Zhang, Z. B. (1997). Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure. Journal of Colloid and Interface Science, 192, 398–407. doi:10.1006/jcis.1997.4998.

  54. Ying, G. G., Kookana, R. S., & Dillon, P. (2003). Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research, 37, 3785–3791. doi:10.1016/S0043-1354(03)00261-6.

  55. Zeng, G. M., Zhang, C., Huang, G. H., Yu, J., Wang, Q., Li, J. B., et al. (2006). Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China. Chemosphere, 65, 1490–1499. doi:10.1016/j.chemosphere.2006.04.013.

  56. Zhang, Z. B., & Liu, L. S. (1989). Marine physical chemistry p. 811. Beijing: Marine.

  57. Zhao, X.-K., & Yang, G.-P. (2002). Study on the sorption of 2-naphthol on marine sediments. Colloids and Surfaces A: Physicochem. Eng. Aspects, 211, 259–266. doi:10.1016/S0927-7757(02)00282-0.

  58. Zhou, J. L., & Rowland, S. J. (1997). Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Water Research, 31, 1708–1718. doi:10.1016/S0043-1354(96)00323-5.

Download references

Author information

Correspondence to Chong Tian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tian, C., Wang, J. & Song, X. Sediment–Water Interactions of Bisphenol A Under Simulated Marine Conditions. Water Air Soil Pollut 199, 301–310 (2009). https://doi.org/10.1007/s11270-008-9879-5

Download citation

Keywords

  • Bisphenol A
  • Sediment
  • Sorption
  • Influencing factors