Water, Air, and Soil Pollution

, Volume 198, Issue 1–4, pp 393–405 | Cite as

Potential Threats from a Likely Nuclear Power Plant Accident: a Climatological Trajectory Analysis and Tracer Study

  • Tayfun KindapEmail author
  • Ufuk Utku Turuncoglu
  • Shu-Hua Chen
  • Alper Unal
  • Mehmet Karaca


The legacy of Chernobyl is not the only nuclear accident likely to confront Turkish territory, which is not far from other insecure power plants, especially the Metsamor. The main purpose of this study was to examine the possible impacts to Turkish territory of a hypothetical accident at the Metsamor Nuclear Plant. The research was performed based on two different methodologies: First, a 10-day trajectory analysis was carried out a set of long-term (30 years) meteorological data; second, a tracer study was performed using the MM5T online model for the selected episode. Trajectory and tracer studies showed that an accident at the Metsamor Nuclear Power Plant would influence all of Turkey. Furthermore, vulnerable regions in Turkey after the Chernobyl disaster were demonstrated as a new and first attempt in this study.


Nuclear accidents Trajectory analysis MM5 Tracer Model 



This study has been supported by a research grant (11_05_268) provided by the Secretaria of Research Activities at Istanbul Technical University and by a research grant (105Y046) provided by The Scientific and Technological Research Council of Turkey (TUBITAK). The modeling experiments were carried out at the computing facilities of the Institute of Informatics at Istanbul Technical University. Thanks to M. Ersen Aksoy and Taylan Sancar (EIES) for technical assistances. We appreciate the editorial assistance provided by Ayce Aksay.


  1. Balassanian, S. Y., Martirosyan, A. H., Nazaretian, S. N., Arakelian, A. R., Avanessian, A. S., Igumnov, V. A., et al. (1999). Seismic hazard assessment in Armenia. Natural Hazards, 18, 227–236. doi: 10.1023/A:1008017315716.CrossRefGoogle Scholar
  2. Bartnicki, J., & Saltbones, J. (1997). Analysis of atmospheric transport and deposition of radioactive material released during a potential accident at Kola nuclear power plant. Oslo: DNMI DNMI Research Report no. 43.Google Scholar
  3. Brandt, J., Christensen, J. H., & Frohn, L. M. (2002). Modelling transport and deposition of cesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics Discussion, 2, 825–874.Google Scholar
  4. Bitan, A., & Sa’Aroni, H. (1992). The horizontal and vertical extension of the Persian Gulf pressure trough. International Journal of Climatology, 12, 733–747. doi: 10.1002/joc.3370120706.CrossRefGoogle Scholar
  5. Borzilov, V. A., & Klepikova, N. V. (1993). Effect of meteorological conditions and release composition on radionuclide deposition after the Chernobyl accident. In S. E. Merwin, & M. I. Balonov (Eds.), The Chernobyl Papers (pp. 47–68). Richland: Research Enterprises.Google Scholar
  6. Charles, H. J., Ronald, K. C., Michael, H. S., Michael, D. L., Susan, K. L., & Cham, E. D. (1997). Levels of cesium, mercury and lead in fish, and cesium in pond sediments in an inhabited region of the Ukraine near Chernobyl. Environmental Pollution, 98, 223–232. doi: 10.1016/S0269-7491(97)00135-8.CrossRefGoogle Scholar
  7. Chen, S. -H., Dudhia, J., Kain, J. S., Kindap, T., & Tan, E. (2008). Development of the online MM5 tracer model and its applications to air pollution episodes in Istanbul, Turkey and Sahara dust transport. Journal of Geophysical Research, 113, D11203. doi: 10.1029/2007JD009244.CrossRefGoogle Scholar
  8. Cisternas, A., Philip, H., & Bousquet, J. C. (1989). The Spitak (Armenia) earthquake of 7 December 1988: field observations, seismology and tectonics. Nature, 339, 675–679. doi: 10.1038/339675a0.CrossRefGoogle Scholar
  9. Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46, 3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  10. Facchinelli, A., Magnoni, M., Gallini, L., & Bonifacio, E. (2002). 137Cs Contamination from Chernobyl of Soils in Piemonte (North-West Italy): Spatial Distribution and Deposition Model. Water, Air, and Soil Pollution, 134, 339–350. doi: 10.1023/A:1014135717747.CrossRefGoogle Scholar
  11. Grell, G. A., Dudhia, J., & Stauffer, D. R. (1995). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR/TN-398 + STR p. 122. Boulder: National Center for Atmospheric Research.Google Scholar
  12. Hong, S. Y., & Pan, H. L. (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124, 2322–2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.CrossRefGoogle Scholar
  13. IAEA (1991). The International Chernobyl Project. Vienna: IAEA.Google Scholar
  14. Kain, J. S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  15. Khitrov, L. M., Cherkezyan, V. O., & Rumyantsev, O. V. (1994). Hot particles after the Chernobyl accident. Geochemistry International, 31, 46–55.Google Scholar
  16. Kindap, T. (2008). Identifying the Trans-Boundary Transport of Air Pollutants to the City of Istanbul Under Specific Weather Conditions. Water, Air, and Soil Pollution, 189, 279–289. doi: 10.1007/s11270-008-9618-y.CrossRefGoogle Scholar
  17. Langner, J., Robertson, L., Persson, C., & Ullerstig, A. (1998). Validation of the Operational Emergency Response Model at the Swedish Meteorological and Hydrological Institute Using Data from Etex and the Chernobyl Accident. Atmospheric Environment, 32, 4325–4333. doi: 10.1016/S1352-2310(98)00175-7.CrossRefGoogle Scholar
  18. Mason, C. F., & Macdonald, S. M. (1987). Radioactivity in otter scats in Britain following the chernobyl reactor accident. Water, Air, and Soil Pollution, 37, 131–137.Google Scholar
  19. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. Journal of Geophysical Research, 102(D14), 16663–16682. doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  20. Nordlund, G., Rossi, J., Valkama, I., & Seppo, V. (1988). Probabilistic trajectory and dose analysis for Finland due to hypothetical radioactive releases at Sosnovyy Bor. Espoo: Technical Research Centre of Finland Research Note 847, ISBN 951-38-3106-X.Google Scholar
  21. OECD (1977). The OECD Programme on Long Range Transport of Air Pollutants. Measurements and Findings. Paris: Organization for Co-operation and Development.Google Scholar
  22. Okay, A. I., & Tuysuz, O. (1999). Tethyan sutures of northern Turkey. Geological Society Special Publications, 156, 475–515. doi: 10.1144/GSL.SP.1999.156.01.22.CrossRefGoogle Scholar
  23. Pettersen, S. (1956). Weather Analysis and Forecasting. New York: McGraw-Hill.Google Scholar
  24. Powers, D. A., Kress, T. S., & Jankowski, M. W. (1987). The Chernobyl source term. Nuclear Safety, 28, 10–28.Google Scholar
  25. Pöllänen, R., Ilander, T., Lehtinen, J., Leppänen, A., Nikkinen, M., Toivonen, H., et al. (1999). Remote monitoring field trial: Application to automated air sampling. Report on Task FIN-E935 of the Finnish Support Programme to IAEA Safeguards. STUK-YTO-TR 154. STUK, Helsinki.Google Scholar
  26. Pöllänen, R., Valkama, I., & Toivonen, H. (1997). Transport of Radioactive Particles from the Chernobyl Accident. Atmospheric Environment, 31, 3575–3590. doi: 10.1016/S1352-2310(97)00156-8.CrossRefGoogle Scholar
  27. Renato, G., Sandro, D., Dionisio, M., & Giorgio, V. (1994). The vertical distribution of the Cs-137 derived from Chernobyl fall-out in the uppermostSphagnum layer of two peatlands in the southern Alps (Italy). Water, Air, and Soil Pollution, 75, 93–106. doi: 10.1007/BF01100402.CrossRefGoogle Scholar
  28. Saltbones, J., Bartnicki, J., & Foss, A. (1997). Atmospheric transport and deposition from potential accident at Kola Nuclear Power Plant. Part 2: Worst case scenarios p. 110. Oslo: DNMIResearch Report no 56.Google Scholar
  29. Saltbones, J., Foss, A., & Bartnicki, J. (2000). Threat to Norway from potential accidents at the Kola nuclear power plant. Climatological trajectory analysis and episode studies. Atmospheric Environment, 34, 407–418. doi: 10.1016/S1352-2310(99)00246-0.CrossRefGoogle Scholar
  30. Sandalls, F. J., Segal, M. G., & Victorova, N. (1993). Hot particles from Chernobyl: a review. Journal of Environmental Radioactivity, 18, 5–22. doi: 10.1016/0265-931X(93)90063-D.CrossRefGoogle Scholar
  31. Stohl, A., Hittenberger, M., & Wotawa, G. (1998). Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmospheric Environment, 32, 4245–4264. doi: 10.1016/S1352-2310(98)00184-8.CrossRefGoogle Scholar
  32. Tschiersch, J., & Georgi, B. (1987). Chernobyl Fallout Size Distribution in Urban Areas. Journal of Aerosol Science, 18, 689–692. doi: 10.1016/0021-8502(87)90098-X.CrossRefGoogle Scholar
  33. UN Chernobyl Forum (2005). Environmental consequences of the chernobyl accident and their remediation: twenty years of experience report of the UN Chernobyl Forum Expert Group “Environment” (EGE) August 2005.Google Scholar
  34. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1988). Sources, effects and risks of ionizing radiation. New York: UNSCEAR.Google Scholar
  35. Varinlioglu, A., & Kose, A. (2005). Determination of Natural and Artificial Radionuclide Levels in Soils of Western and Southern Coastal Area of Turkey. Water, Air, and Soil Pollution, 164, 401–407. doi: 10.1007/s11270-005-4039-7.CrossRefGoogle Scholar
  36. Veen, A. W. L., & Meijer, R. J. (1989). Radionuclide levels at two sites in a water extraction area in the Netherlands after chernobyl. Water, Air, and Soil Pollution, 44, 83–92. doi: 10.1007/BF00228780.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tayfun Kindap
    • 1
    • 2
    Email author
  • Ufuk Utku Turuncoglu
    • 3
  • Shu-Hua Chen
    • 4
  • Alper Unal
    • 1
  • Mehmet Karaca
    • 1
  1. 1.Eurasia Institute of Earth SciencesIstanbul Technical UniversityIstanbulTurkey
  2. 2.Environmental and Occupational Health Sciences Institute (EOHSI)Rutgers UniversityPiscatawayUSA
  3. 3.Institute of InformaticsIstanbul Technical UniversityIstanbulTurkey
  4. 4.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations