Water, Air, and Soil Pollution

, Volume 198, Issue 1–4, pp 133–148 | Cite as

Fractionation of Cu, Pb, Cr, and Zn in a Soil Column Amended with an Anaerobic Municipal Sewage Sludge

  • G. Egiarte
  • G. Corti
  • M. Pinto
  • J. Arostegui
  • F. Macías
  • E. Ruíz-Romero
  • M. Camps ArbestainEmail author


The objective of this study was to investigate the changes in the chemical partitioning of Cu, Pb, Cr and Zn within a column of soil incubated with an anaerobic sewage sludge (ANSS) for 2.5 months. The soil was irrigated during the incubation period. A sequential extraction method was used to fractionate these metals into exchangeable, weakly adsorbed, organic, Al oxide, Fe–Mn oxide, and residual, respectively. ANSS was applied at a loading rate of 69 Mg ha−1. The soil is a Dystric Cambisol with low pH (<3.8), low CEC [<10 cmol(+) kg−1 below the first 4 cm depth], and low base saturation (<7%). The addition of the ANSS caused a decrease in concentrations of Cu, Pb, and Cr in the A1 horizon, and an increase in the concentrations with depth. Below the A1 horizon, concentrations of Cu increased uniformly (~1 mg cm−1), and the greatest increases were observed in the residual, Fe–Mn oxides, and weakly adsorbed fractions. Maximum increases in Pb occurred at 4–9 cm of depth (1.6 mg cm−1), and mainly affected the weakly adsorbed fraction. Chromium essentially accumulated at the limit between the A2 and the Bw horizons (1.1–1.5 mg cm−1) as residual and organic bound forms, probably through particulate transport. Zinc mainly accumulated in the A1 horizon (2.9 mg cm−1) as exchangeable Zn. At depth, Zn increments were predominantly observed in the residual fraction. The results of this study thus demonstrate the redistribution of contaminants into different chemical pools and soil layers after sludge amendment.


Heavy metals XR-fluorescence Interestratified mica-vermiculite Acid soil 



This research was funded by INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria); Project RTA03-010.


  1. Ahnstrom, Z. S., & Parker, D. R. (1999). Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Science Society of America Journal, 63, 1650–1658.Google Scholar
  2. Alloway, B. J., & Jackson, A. P. (1991). The behaviour of heavy metals in sewage sludge-amended soils. The Science of the Total Environment, 100, 151–176. doi: 10.1016/0048-9697(91)90377-Q.CrossRefGoogle Scholar
  3. Alva, A. K., Huang, B., & Paramasivam, S. (2000). Soil pH affects copper fractionation and phytotoxicity. Soil Science Society of America Journal, 65, 955–962.Google Scholar
  4. Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.Google Scholar
  5. Basta, N. T., & Sloan, J. J. (1999). Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids. Journal of Environmental Quality, 28, 633–638.Google Scholar
  6. Berna, F., Corti, G., Ugolini, F. C., & Agnelli, A. (2000). Assessment of the role of rock fragments in the retention of cadmium and lead in irrigated arid stony soils. Annali di Chimica, 90, 209–217.Google Scholar
  7. Bonnin, C. (2001). Organic pollutants and sludge – The French Experience. Research the sludge directive, a conference on sewage sludge. Brussels, Belgian, October 30–31, 2001.
  8. Camps Arbestain, M., Madinabeitia, Z., Anza Hortalà, M., Macías-García, F., Virgel, S., Macías, F. (2008). Availability of heavy metals in mixtures of unconsolidated residues. Waste Management. doi:10.1016 /j.wasman.2008.01.08.
  9. Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444. doi: 10.1016/j.envpol.2004.03.003.CrossRefGoogle Scholar
  10. Cheburkin, A. K., & Shotyk, W. (1996). A double plate sample carrier for a simple total reflection X-ray fluorescence (TRXRF) analyzer. X-Ray Spectrometry, 25, 175–178. doi: 10.1002/(SICI)1097-4539(199607)25:4<175::AID-XRS161>3.0.CO;2-C.CrossRefGoogle Scholar
  11. Cheburkin, A. K., & Shotyk, W. (1999). Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer: synthetic standards, dilute natural waters, and acid digests of plant material. X-Ray Spectrometry, 28, 379–383. doi: 10.1002/(SICI)1097-4539(199909/10)28:5<379::AID-XRS367>3.0.CO;2-B.CrossRefGoogle Scholar
  12. Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality, 25, 69–79.Google Scholar
  13. Cunningham, J. D., Keeney, D. R., & Ryan, J. A. (1975a). Yield and metal composition of corn and rye grown on sewage sludge amended soils. Journal of Environmental Quality, 4, 448–454.Google Scholar
  14. Cunningham, J. D., Keeney, D. R., & Ryan, J. A. (1975b). Phytotoxicity in and metal uptake from soil treated with metal-amended sewage sludge. Journal of Environmental Quality, 4, 455–460.Google Scholar
  15. Cunningham, J. D., Keeney, D. R., & Ryan, J. A. (1975c). Phytotoxicity and uptake of metals added to soils as inorganic salts or in sewage sludge. Journal of Environmental Quality, 4, 460–462.Google Scholar
  16. Dowdy, R. H., Clapp, C. E., Linden, D. R., Larson, W. E., Halbach, T. R., & Polta, R. C. (1994). Twenty years of trace metal partitioning on the Rosemount sewage sludge watershed. In C.E. Clapp, et al. (Ed.), Sewage sludge: Land utilization and the environment (pp. 149–155). Madison, WI: ASA, CSSA, and SSSA.Google Scholar
  17. Dunnivant, F. M., Jardine, P. M., Taylor, D. L., & MacCarthy, J. F. (1992). Cotransport of cadmium and hexachlorobiphenil by dissolved organic carbon through columns containing aquifer material. Environmental Science & Technology, 26, 360–368. doi: 10.1021/es00026a018.CrossRefGoogle Scholar
  18. Egiarte, G., Camps Arbestain, M., Ruíz-Romera, E., & Pinto, M. (2006). Study of the chemistry of an acid soil column and of the corresponding leachates after the addition of an anaerobic municipal sludge. Chemosphere, 65, 2456–2467. doi: 10.1016/j.chemosphere.2006.04.044.CrossRefGoogle Scholar
  19. Eick, M. J., Peak, J. D., Brady, P. V., & Pesek, J. D. (1999). Kinetics of lead adsorption/desorption on goethite: Residence time effect. Soil Science, 164, 28–39. doi: 10.1097/00010694-199901000-00005.CrossRefGoogle Scholar
  20. Emmerich, W. E., Lund, L. J., Page, A. L., & Chang, A. C. (1982). Solid phase forms of heavy metals in sewage sludge-treated soil. Journal of Environmental Quality, 11, 182–186.Google Scholar
  21. Fendorf, S. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67, 55–71. doi: 10.1016/0016-7061(94)00062-F.CrossRefGoogle Scholar
  22. Forbes, E. A., Posner, A. M., & Quirk, J. P. (1976). The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite. Journal of Soil Science, 27, 154–166. doi: 10.1111/j.1365-2389.1976.tb01986.x.CrossRefGoogle Scholar
  23. Gasser, U. G., Juchler, S. J., & Sticher, H. (1994). Chemistry and speciation of soil water from serpentinic soils: importance of colloids in the transport of Cr, Fe, Mg, and Ni. Soil Science, 158, 314–322.CrossRefGoogle Scholar
  24. Johnson, C. M., & Ulrich, A.(1959). Analytical methods for use in plant analysis. Bulletin 766. Berkeley: University of California, Agricultural Experiment Station.Google Scholar
  25. Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30, 485–492.Google Scholar
  26. Keller, C., McGrath, S. P., & Dunham, S. J. (2002). Trace metal leaching through a soil-grassland system after sewage sludge application. Journal of Environmental Quality, 31, 1550–1560.Google Scholar
  27. Lagerwerff, J. V., Biersdorf, G. T., & Brower, D. L. (1976). Retention of metals in sewage sludge: I. Constituent heavy metals. Journal of Environmental Quality, 5, 19–23.Google Scholar
  28. Lake, D. L., Kirk, P. W. W., & Lester, J. N. (1984). Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: A review. Journal of Environmental Quality, 13, 175–183.Google Scholar
  29. Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.Google Scholar
  30. McBride, M. B. (1995). Toxic metal accumulation from agricultural use of sludge. Are USEPA regulations protective? Journal of Environmental Quality, 29, 848–854.Google Scholar
  31. McLaren, R. G., & Clucas, L. M. (2001). Fractionation of copper, nickel, and zinc in metal-spiked sewage sludge. Journal of Environmental Quality, 30, 1968–1975.Google Scholar
  32. McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. L. (2000). Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38(6), 1037–1086. doi: 10.1071/SR99128.CrossRefGoogle Scholar
  33. McLean, J. E., Bledsoe, B. E. (1992). Behaviour of metals in soils. EPA Ground Water issue. EPA/540/S-92/018.Google Scholar
  34. Mesuere, K., Edelstein, R., & Fish, W. (1991). Identification of copper contamination in sediments by a microscale partial extraction technique. Journal of Environmental Quality, 20, 114–118.Google Scholar
  35. Milacic, R., & Stupar, J. (1995). Fractionation and oxidation of chromium in tannary waste- and sewage sludge-amended soil. Environmental Science & Technology, 29, 506–514. doi: 10.1021/es00002a029.CrossRefGoogle Scholar
  36. Power, J. F., & Dick, W. A.(2000). Land application of agricultural, industrial, and municipal by-products. SSSA Book Ser. 6. SSSA, Madison, WI.Google Scholar
  37. Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium, and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23, 50–57.Google Scholar
  38. Sheckel, K. G., & Sparks, D. L. (2001). Dissolution kinetics of nickel surface precipitates on clay minerals and oxide surfaces. Soil Science Society of America Journal, 65, 685–694.Google Scholar
  39. Sims, J. T., & Kline, J. S. (1991). Chemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge. Journal of Environmental Quality, 20, 387–395.CrossRefGoogle Scholar
  40. Sinaj, S., Mächler, F., & Frossard, E. (1999). Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils. Soil Science Society of America Journal, 63, 1618–1625.Google Scholar
  41. Sommers, L. E., Nelson, D. W., & Yost, K. J. (1976). Variable nature of chemical composition of sewage sludge. Journal of Environmental Quality, 5, 303–306.Google Scholar
  42. Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metals chemistry in arid zone field soils amended with sewage sludge. I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal, 46, 260–264.Google Scholar
  43. Su, D. C., & Wong, J. W. C. (2004). Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, 29, 895–900. doi: 10.1016/S0160-4120(03)00052-7.CrossRefGoogle Scholar
  44. Tack, F. M., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. J. Environ. Anal. Chem, 59, 225–238. doi: 10.1080/03067319508041330.CrossRefGoogle Scholar
  45. Temminghoff, E. J. M., van der Zee, S. E. A. T. M., & de Hann, F. A. M. (1997). Copper mobility in a copper contaminated sandy soil as affected by pH, solid and dissolved organic matter. Environmental Science & Technology, 31, 1109–1115. doi: 10.1021/es9606236.CrossRefGoogle Scholar
  46. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. doi: 10.1021/ac50043a017.CrossRefGoogle Scholar
  47. Vinten, A. J. A., Yaron, B., & Nye, P. H. (1983). Vertical transport of pesticides into soil when adsorbed on suspended particles. Journal of Agricultural and Food Chemistry, 31, 662–664. doi: 10.1021/jf00117a048.CrossRefGoogle Scholar
  48. Voegelin, A., Bartmettler, K., & Kretzschmar, R. (2003). Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. Journal of Environmental Quality, 32, 865–875.Google Scholar
  49. WRB (2006). World reference base for soil resources, 2nd edition. World Soil Resources Reports No. 103. FAO. Rome. 145 p.Google Scholar
  50. Zazoski, R. J., & Burau, R. G. (1977). A rapid nitric-perchloric acid digestion method for multielement tissue analysis. Communications in Soil Science and Plant Analysis, 8(5), 425–436.CrossRefGoogle Scholar
  51. Zhang, H., Zhao, F. J., Sun, B., Davison, W., & McGrath, S. P. (2001). A new method to measure effective soil solution concentration predicts copper availability to plants. Environmental Science & Technology, 35, 2602–2607. doi: 10.1021/es000268q.CrossRefGoogle Scholar
  52. Zhang, J., Huang, W. W., & Wang, Q. (1990). Concentration and partitioning of particulate trace metals in the Changjiang (Yangtze River). Water, Air, and Soil Pollution, 52, 57–70. doi: 10.1007/BF00283114.CrossRefGoogle Scholar
  53. Zhao, F. J., Dunham, S. J., & McGrath, S. P. (1997). Lessons to be learned about soil-plant metal transfer from the 50th-year sewage sludge experiment at Woburn, UK. In I. K. Iskandar et al. (eds.) Proc. Of Extended Abstract From the 4th Int. Conf. on the Biogeochem. of Trace Elements (pp 693–694), Berkeley, CA, 23–26 June 1997, CRREL, Hanover, NHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. Egiarte
    • 1
  • G. Corti
    • 2
  • M. Pinto
    • 1
  • J. Arostegui
    • 3
  • F. Macías
    • 4
  • E. Ruíz-Romero
    • 5
  • M. Camps Arbestain
    • 1
    Email author
  1. 1.NEIKERBizkaiaSpain
  2. 2.Dipartimento di Scienze Ambientali e delle Produzioni VegetaliUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Facultad de Ciencia y Tecnología, Departamento de Mineralogía y PetrologíaUPVLeioaSpain
  4. 4.Departamento de Edafología y Química Agrícola, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Departamento de Química e Ingeniería Ambiental, Escuela de IngenierosUPVBilbaoSpain

Personalised recommendations