Water, Air, and Soil Pollution

, Volume 198, Issue 1–4, pp 95–110 | Cite as

Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis

  • María Castellano
  • Amaya Franco
  • David Cartelle
  • Manuel Febrero
  • Enrique Roca
Article

Abstract

Frame and daughters directives for evaluating the ambient air quality have been adopted by the EU as a part of the new strategies for pollution prevention and control and environmental management. Therefore, the prediction of ozone concentration and the identification of episodes by modeling are fundamental for protecting and preventing the population and environment against the harmful effects of this species. Under this approach, ambient air quality (immission) data in three zones: A Guarda, Corrubedo and Verín (two coastal and one interior) of Galicia (NW Spain), were collected and evaluated using statistical tools. Punctual and functional background and standard levels of ozone and NOx in the three zones have been determined for detecting abnormal situations and identifying possible emission sources. With this aim, threshold values were established by defining confidence levels. Finally, ozone concentration has been forecasted by time series modeling. Descriptive and predictive models of ozone involving different parameters depending of the area considered have been developed. Satisfactory estimation of ozone concentration was obtained in the three cases with proved efficiency, since predictive values did not exceed the 95% confidence level.

Keywords

Nitrogen oxides Ozone Confidence levels Functional random variables Time series analysis 

References

  1. Bertschi, I. T., & Jaffe, D. A. (2005). Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires. Journal of Geophysical Research (Atmospheres), 110(D5), D05303/1–D05303/14.Google Scholar
  2. Bloomfield, P., Royle, J. A., Steinberg, L. J., & Yang, Q. (1996). Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment, 30, 3067–3077. doi:10.1016/1352-2310(95)00347-9.CrossRefGoogle Scholar
  3. Box, G. E., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control, revised edition. San Francisco, CA: Holden Day.Google Scholar
  4. Bronnimann, S., Buchmann, B., & Wanner, H. (2002). Trends in near-surface ozone concentration in Switzerland: The 1990s. Atmospheric Environment, 36, 2841–2852. doi:10.1016/S1352-2310(02)00145-0.CrossRefGoogle Scholar
  5. Castell, N., Mantilla, E., Fernández, F., & López, E. (2004). Comparison of the ozone levels temporal variability in coastal and interior environments. In: Climate between the sea and the mountains. Asociación Española de Climatología y Universidad de Cantabria. Serie A, 4, 591–598 (In Spanish).Google Scholar
  6. Castellano Méndez, M., Aira, M. J., Iglesias, I., Jato, V., & González-Manteiga, W. (2005). Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. International Journal of Biometeorology, 49, 310–316. doi:10.1007/s00484-004-0247-x.CrossRefGoogle Scholar
  7. Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martínez, J., Parrish, D., et al. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research, 97, 6037–6055.Google Scholar
  8. Chatfield, C. (1996). The analysis of time series. An introduction, fifth edition. In texts in statistical science. London: Chapman and Hall.Google Scholar
  9. Chen, K. S., Ho, Y. T., Lai, C. H., & Chou, Y.-M. (2003). Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. Atmospheric Environment, 37, 1811–1823. doi:10.1016/S1352-2310(03)00079-7.CrossRefGoogle Scholar
  10. Cuevas, A., Febrero-Bande, M., & Fraiman, R. (2006). On the use of the bootstrap for estimating functions with functional data. Computational Statistics & Data Analysis, 51, 1063–1074. doi:10.1016/j.csda.2005.10.012.CrossRefGoogle Scholar
  11. Dabdub, D., Dehaan, L. L., & Seinfeld, J. H. (1999). Analysis of ozone in the San Joaquin Valley of California. Atmospheric Environment, 33, 2501–2514. doi:10.1016/S1352-2310(98)00256-8.CrossRefGoogle Scholar
  12. Damon, J., & Guillas, S. (2002). The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics, 13, 759–774. doi:10.1002/env.527.CrossRefGoogle Scholar
  13. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. The Science of the Total Environment, 299, 97–113. doi:10.1016/S0048-9697(02)00251-6.CrossRefGoogle Scholar
  14. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2004). Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere, 56, 631–639. doi:10.1016/j.chemosphere.2004.04.013.CrossRefGoogle Scholar
  15. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2005). Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere, 61, 1379–1389. doi:10.1016/j.chemosphere.2005.04.079.CrossRefGoogle Scholar
  16. Dutot, A.-L., Rynkiewicz, J., Steiner, F. E., & Rude, J. (2007). A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental Modelling & Software, 22, 1261–1269. doi:10.1016/j.envsoft.2006.08.002.CrossRefGoogle Scholar
  17. Elkamel, A., Abdul-Wahab, S., Bouhamra, W., & Alper, E. (2001). Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Advances in Environmental Research, 5, 47–59. doi:10.1016/S1093-0191(00)00042-3.CrossRefGoogle Scholar
  18. Environmental Laboratory of Galicia (2001). Study of atmospheric deposition and its characterisation and impact as atmospheric pollution prevention in the Galicia-North Portugal Eurorregion. Initiative INTERREG IIC, Operative Programme “Atlantic Space” (In Spanish).Google Scholar
  19. European Environment Agengy.(2004). EPER The European Pollutant Emission Register. http://eper.eea.europa.eu/eper/.
  20. Febrero-Bande, M., Galeano, P., & González-Manteiga, W. (2007). A functional analysis of NOx levels: location and scale estimation and outlier detection. Computational Statistics, 22, 411–427. doi:10.1007/s00180-007-0048-x.CrossRefGoogle Scholar
  21. Fernández de Castro, B., Guillas, S., & González Manteiga, W. (2005). Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics, 47, 212–222. doi:10.1198/004017005000000067.CrossRefGoogle Scholar
  22. Fernández de Castro, B. M., Prada-Sánchez, J. M., Febrero-Bande, M., Bermúdez-Cela, J. L., Hernández-Hernández, J. J., & González-Manteiga, W. (2003). Prediction of SO2 level using neural networks. Journal of the Air & Waste Management Association, 53, 532–538.Google Scholar
  23. Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10, 419–440. doi:10.1007/BF02595706.CrossRefGoogle Scholar
  24. Fusco, A. C., & Logan, J. A. (2003). Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. Journal of Geophysical Research, 108(D15), ACH 4–1–ACH 4-25.CrossRefGoogle Scholar
  25. Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34, 171–176. doi:10.1016/S1352-2310(99)00315-5.CrossRefGoogle Scholar
  26. Ghiaus, C. (2005). Linear fuzzy-discriminant analysis applied to forecast ozone concentration classes in sea-breeze regime. Atmospheric Environment, 39, 4691–4702. doi:10.1016/j.atmosenv.2005.04.012.CrossRefGoogle Scholar
  27. Grifoni, R. C., Passerini, G., & Tascini, S. (2004). An assessment of the sea/valley breeze and its impact on ozone behaviour. Environmental Studies, 10, 257–266.Google Scholar
  28. Huang, H., Akustu, Y., Arai, M., & Tamura, M. (2001). Analysis of photochemical pollution in summer and winter using a photochemical box model in the center of Tokyo, Japan. Chemosphere, 44, 223–230. doi:10.1016/S0045-6535(00)00189-2.CrossRefGoogle Scholar
  29. Jiménez, P., Jorba, O., Parra, R., & Baldasano, J. M. (2006). Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmospheric Environment, 40, 5056–5072. doi:10.1016/j.atmosenv.2005.12.060.CrossRefGoogle Scholar
  30. Krupa, S., Nosal, M., Ferdinand, J. A., Stevenson, R. E., & Skelly, J. M. (2003). A multi-variate statistical model integrating passive sampler and meteorology data to predict the frequency distributions of hourly ambient ozone (O3) concentrations. Environmental Pollution, 124, 173–178. doi:10.1016/S0269-7491(02)00407-4.CrossRefGoogle Scholar
  31. Lee, S.-H., Akimoto, H., Nakane, H., Kurnosenko, S., & Kinjo, Y. (1998). Lower tropospheric ozone trend observed in 1989–1997 at Okinawa, Japan. Geophysical Research Letters, 25, 1637–1640. doi:10.1029/98GL01224.CrossRefGoogle Scholar
  32. Lengyel, A., Héberger, H., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57, 889–896. doi:10.1016/j.chemosphere.2004.07.043.CrossRefGoogle Scholar
  33. Logan, J. A. (1985). Tropospheric ozone: seasonal behaviour, trends and anthropogenic influence. Journal of Geophysical Research, 90, 463–482. doi:10.1029/JD090iD06p10463.CrossRefGoogle Scholar
  34. Logan, J. A. (1994). Trends in the vertical distribution of ozone: An analysis of ozone sonde data. Journal of Geophysical Research, 99, 25553–25585. doi:10.1029/94JD02333.CrossRefGoogle Scholar
  35. Martinez-Cortizas, A., & Pérez-Alberti, A. (2000). Galician climatic atlas (In Spanish). Environmental Ministry, Galician Government Eds., Santiago de Compostela (Spain).Google Scholar
  36. MacDonald, C. P., Roberts, P. T., Main, H. H., Dye, T. S., Coe, D. L., & Yarbrough, J. (2001). The 1996 Paso del Norte Ozone Study: Analysis of meteorological and air quality data that influence local ozone concentrations. The Science of the Total Environment, 276, 93–109. doi:10.1016/S0048-9697(01)00774-4.CrossRefGoogle Scholar
  37. Menut, L., Coll, I., & Cautenet, S. (2005). Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP2a and IOP2b. Atmospheric Research, 74, 139–159. doi:10.1016/j.atmosres.2004.04.008.CrossRefGoogle Scholar
  38. Monks, P. S. (2000). A review of the observations and origins of the spring ozone maximum. Atmospheric Environment, 34, 3545–3561. doi:10.1016/S1352-2310(00)00129-1.CrossRefGoogle Scholar
  39. Monteiro, A., Vautard, R., Lopes, M., Miranda, A., & Borrego, C. (2005). Air pollution forecast in Portugal: A demand from the new air quality framework directive. International Journal of Environment and Pollution, 25, 4–15. doi:10.1504/IJEP.2005.007650.CrossRefGoogle Scholar
  40. Palacios, M., Kirchner, F., Martilli, A., Clappier, A., Martín, F., & Rodríguez, M. E. (2002). Summer ozone episodes in the Greater Madrid area. Analyzing the ozone response to abatement strategies by modelling. Atmospheric Environment, 36, 5323–5333. doi:10.1016/S1352-2310(02)00590-3.CrossRefGoogle Scholar
  41. Peña, D. (2002). Multivariate data analysis (in Spanish). McGraw Hill.–Interamericana de España, S.A.U.Google Scholar
  42. Pulles, T. van het Bolscher, M., Brand, R., & Visschedijk, A. (2007). Assessment of global emissions from fuel combustion in the final decades of the 20th century. Application of the Emission Inventory Model TEAM. TNO Report 2007-A-R132/B.Google Scholar
  43. Quinteira, S., Monteiro, N., Cartelle, D., Rodríguez, R., Costoya, M., Roca, E., et al. (2001). Monitorizaçao de metais pesados em solos por ICP e análise da flora microbiana. XV Encontro Galego-Portugues de Química, Book of Proceedings (pp 505–506). A Coruña. (In Spanish).Google Scholar
  44. Ramsay, J. O., & Silverman, B. W. (1997). Functional data analysis. New York: Springer. (In Springer series in statistics).Google Scholar
  45. Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis. In Springer series in statistics. New York: Springer.Google Scholar
  46. Sanz, M. J., Calatayud, V., & Sánchez-Peña, G. (2007). Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environmental Pollution, 145, 620–628. doi:10.1016/j.envpol.2006.02.031.CrossRefGoogle Scholar
  47. Shively, T. S., & Sager, T. W. (1999). Semiparametric regression approach to adjusting for meteorological variables in air pollution trends. Environmental Science & Technology, 33, 3873–3880. doi:10.1021/es990286b.CrossRefGoogle Scholar
  48. Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its application. In R. H. Shumway, & D. S. Stoffer (Eds.), Springer text in statistics. New York: Springer.Google Scholar
  49. Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845. doi:10.1016/S1352-2310(98)00345-8.CrossRefGoogle Scholar
  50. Soja, G., & Soja, A. M. (1999). Ozone indices based on simple meteorological parameters: Potentials and limitations of regression and neural network models. Atmospheric Environment, 33, 4299–4307. doi:10.1016/S1352-2310(99)00126-0.CrossRefGoogle Scholar
  51. Sousa, S. I. V., Martins, F. G., Pereira, M. C., & Alvim-Ferraz, M. C. M. (2006). Prediction of ozone concentrations in Oporto city with statistical approaches. Chemosphere, 64, 1141–1149. doi:10.1016/j.chemosphere.2005.11.051.CrossRefGoogle Scholar
  52. Stohl, A., & Trickl, T. (1999). A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. Journal of Geophysical Research (Atmospheres), 104(D23), 30445–30462. doi:10.1029/1999JD900803.CrossRefGoogle Scholar
  53. Tarasova, O. A., & Karpetchko, S. Y. (2003). Accounting for local meteorological effects in the ozone time series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics, 3, 941–949.CrossRefGoogle Scholar
  54. Topcu, S., Anteplioglu, U., & Incecik, S. (2003). Surface ozone concentrations and its relation to wind field in Istanbul. Water Air and Soil Pollution Focus, 3, 53–64. doi:10.1023/A:1026046321511.CrossRefGoogle Scholar
  55. US Environmental Protection Agency. (1999). Guideline for developing an ozone forecasting program. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.Google Scholar
  56. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442. doi:10.1016/j.atmosenv.2004.03.030.CrossRefGoogle Scholar
  57. Vinagarzan, R., & Thomson, B. (2004). Temporal variation in daily concentrations of ozone and acid related substances in Saturna Island, British Columbia, Canada. Journal of the Air & Waste Management Association, 54, 459–472.Google Scholar
  58. Wei, W. W. S. (1993). Time series analysis: Univariate and multivariate methods. Wokingham, UK: Addison-Wesley.Google Scholar
  59. Wu, H. W. Y., & Chan, L. Y. (2001). Surface ozone trends in Hong Kong in 1985–1995. Environment International, 26, 213–222. doi:10.1016/S0160-4120(00)00108-2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • María Castellano
    • 1
  • Amaya Franco
    • 2
  • David Cartelle
    • 3
  • Manuel Febrero
    • 1
  • Enrique Roca
    • 2
  1. 1.Department of Statistics and Operation ResearchUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Chemical Engineering, School of EngineeringUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Environmental Laboratory of GaliciaXunta de GaliciaA CoruñaSpain

Personalised recommendations