Advertisement

Water, Air, and Soil Pollution

, Volume 198, Issue 1–4, pp 87–94 | Cite as

Analysis of Coal Ash for Trace Elements and their Geo-environmental Implications

  • Harwant Singh
  • Prabir Kumar KolayEmail author
Article

Abstract

This study determined the content of trace elements in coal ash collected from a coal-fired thermal power plant using local coal from Sawarak, Malaysia. This is crucial for the potential impact on the geoenvironment from its disposal and utilization; as coal ash has recently been produced locally in substantial amounts and very limited data is available. The trace elements concentrations presents in coal ashes are compared with the reported coal ash concentrations and the risk for the local wet tropical geoenvironment from the perspective of its vulnerability to these is studied for an indication of potential environmental implications on the wet tropics. The trace elements were found to be in concentrations that, if applied or inadvertently released into the environmental media, present a potential hazard and further necessary research in this regard is indicated.

Keywords

Trace elements Coal ash Wet tropics Geoenvironmental implications 

Notes

Acknowledgments

The authors would like to acknowledge Sejinkat Thermal Power Plant, Kuching, Sarawak, authorities for supplying the coal ash samples. The authors gratefully acknowledge the UNIMAS research centre (RMIC) for the financial support Grant no. 02(51)/459/2004(196).

References

  1. Abernethy, R. F., Peterson, M. J., & Gibson, F. H. (1969). Spectrochemical analysis of coal ash for trace elements. U.S. Bureau of Mines. Reports of Investigations, 7281, 30.Google Scholar
  2. Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.Google Scholar
  3. Adriano, D. C., Weber, J., Bolan, N. S., Paramasivam, S., Koo, B., & Sajwan, K. S. (2002). Effects of high rates of coal fly ash on soil, turfgrass and groundwater quality. Water, Air, and Soil Pollution, 139, 365–385. doi: 10.1023/A:1015895922471.CrossRefGoogle Scholar
  4. Arthur, M. F., Zwick, T. C., Tolle, D. A., & Van Voris, P. (1984). Effects of fly ash on microbial CO2 evolution from agricultural soil. Water, Air, and Soil Pollution, 22, 209–216. doi: 10.1007/BF00163101.CrossRefGoogle Scholar
  5. Ayers, R. U. (1992). Toxic heavy metals: materials cycle optimization. Proceedings of the National Academy of Sciences of the United States of America, 89, 815–820. doi: 10.1073/pnas.89.3.815.CrossRefGoogle Scholar
  6. Baker, D. E., & Chesnin, L. (1975). Chemical monitoring of soils for environmental quality and animal and human health. Advances in Agronomy, 27, 305–337. doi: 10.1016/S0065-2113(08)70013-0.CrossRefGoogle Scholar
  7. Barnes, I. (2001). Specialty and novel uses of fly ash and fly ash component. In: Proceedings of International Workshop on Novel Products from Combustion Residues: Opportunities and Limitations, June 6–8, Morella, Spain, pp. 23–33.Google Scholar
  8. Berrow, M. L., & Reaves, G. A. (1984). In Proceedings of International Conference on Environmental Contamination. CES Consultants, Edinburgh, pp. 334–340.Google Scholar
  9. Bowen, H. J. M. (1979). Environmental chemistry of the elements. Toronto: Academic.Google Scholar
  10. Bowie, S. H. U., & Thornton, I. (Eds.). (1985). Environmental geochemistry and health. Hingham, MA: Kluwer Academic.Google Scholar
  11. Cabrera, J. G., & Woolley, G. R. (1994). Fly ash utilization in civil engineering. Studies in Environmental Science, 60, 345–356. doi: 10.1016/S0166-1116(08)71470-5.CrossRefGoogle Scholar
  12. Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247.CrossRefGoogle Scholar
  13. Cary, E. E., Wielczorek, G. A., & Allaway, W. H. (1967). Reactions of selenite Se added to soils that produce low-Se forages. Soil Science Society of American Proceedings, 31, 21–26.Google Scholar
  14. Chino, M. (1981). Metal stress in rice plants. In K. Kitagishi, & I. Yamane (Eds.), Heavy metal pollution in the soils of Japan (pp. 65–80). Tokyo: Japan Science Society.Google Scholar
  15. Davies, B. E. (1995). Lead. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 206–223). London: Chapman & Hall.Google Scholar
  16. Depledge, M. H., Weeks, J. M., & Bjerregaard, P. (1998). Heavy metals. In P. Calow (Ed.), Handbook of toxicology (pp. 543–569). Oxford: Blackwell Science.Google Scholar
  17. Doelman, P. (1984). Microbiology of soil and sediments. In W. Salomons, & W. M. Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments (pp. 31–52). Berlin: Springer.Google Scholar
  18. Dojlido, J. R., & Best, G. A. (1993). Chemistry of water and water pollution. New York: Ellis Horwood.Google Scholar
  19. Domingo, L. E., & Kyuma, K. (1983). Trace elements in tropical Asian paddy soils. I. Total trace element status. Soil Science and Plant Nutrition, 29(4), 439–452.Google Scholar
  20. Eary, L. E., Rai, D., Mattigold, S. V., & Ainsworth, C. C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. Journal of Environmental Quality, 19, 202–214.Google Scholar
  21. Eymael, M., & Cornelissen, H. (1996). Processed pulverized fly ash for high performance concrete. Waste Management (New York, NY), 16, 237–242. doi: 10.1016/S0956-053X(96)00063-3.Google Scholar
  22. Ferguson, J., & Gravis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6, 1259–1274. doi: 10.1016/0043-1354(72)90052-8.CrossRefGoogle Scholar
  23. Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: level of confidence. Fuel Processing Technology, 39, 21–34. doi: 10.1016/0378-3820(94)90169-4.CrossRefGoogle Scholar
  24. Gauglhofer, J., & Bianchi, V. (1991). Chromium. In E. Merian (Ed.), Metals and their compounds in the environment (pp. 853–878). Weinheim and New York: VCH.Google Scholar
  25. Giere, R., Carleton, L. E., & Lumpkin, G. R. (2003). Micro-and nanochemistry of fly ash from a coal-fired power plant. The American Mineralogist, 88, 1853–1865.Google Scholar
  26. Gough, L. P., Shacklette, H. T., & Case, A. A. (1979). Element concentrations toxic to plants, animals and man. U.S. Geological Survey Bulletin, 1466, 80.Google Scholar
  27. Hansen, Y., Notten, P. J., & Pitrie, J. G. (2002). The environmental impact of ash management in coal-based power generation. Applied Geochemistry, 17, 1131–1141. doi: 10.1016/S0883-2927(02)00013-6.CrossRefGoogle Scholar
  28. Harrison, R. M., & Laxen, D. P. H. (1981). Lead pollution, causes and control. London: Chapman and Hall.Google Scholar
  29. Hem, J. D. (1985). Study and interpretation of chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper, 3354. U.S. Geological Survey.Google Scholar
  30. JCPDS (1994). Powder diffraction file, 44, 7354-CD ROM (PDF 1–44). Pennsylvania, USA: International Centre for Diffraction Data.Google Scholar
  31. Kabata-Pendias, A., & Pendias, H. (1979). Trace elements in the biological environment. Warsaw: Wyd. Geologiczne.Google Scholar
  32. Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. Boca Raton: CRC.Google Scholar
  33. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: Lewis.Google Scholar
  34. Kharkar, D. P., Turekian, K. K., & Bertine, K. K. (1968). Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium and cesium to the oceans. Geochimica et Cosmochimica Acta, 32, 285–298. doi: 10.1016/0016-7037(68)90016-1.CrossRefGoogle Scholar
  35. Kitagishi, K., & Yamane, I. (Eds.). (1981). Heavy metal pollution in soils of Japan (302 p.). Tokyo: Japan Science Society.Google Scholar
  36. Kyuma, K. (2004). Paddy soil science. Kyoto: Kyoto University Press.Google Scholar
  37. Leonard, A. (1991). Arsenic. In E. Merian (Ed.), Metals in their compounds in the environment (pp. 751–774). Weinheim and New York: VCH.Google Scholar
  38. Lindsay, W. L. (1972). Zinc in soils and plant nutrition. Advances in Agronomy, 24, 147–186. doi: 10.1016/S0065-2113(08)60635-5.CrossRefGoogle Scholar
  39. Luoma, S. N. (1983). Bioavailability of trace metals to aquatic organisms—a review. The Science of the Total Environment, 28, 1–23. doi: 10.1016/S0048-9697(83)80004-7.Google Scholar
  40. Mance, G. (1987). Pollution threat of heavy metals in aquatic environments. London: Elsevier.Google Scholar
  41. Mattigold, S. V., Rai, D., Eary, L. E., & Ainsworth, C. C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. Journal of Environmental Quality, 19, 188–201.Google Scholar
  42. McGrath, S. P. (1995). Chromium and nickel. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 152–178). London: Blackie Academic and Professional.Google Scholar
  43. Meybeck, M. (1982). Carbon, nitrogen and phosphorus transport by world rivers. American Journal of Science, 282, 401–450.Google Scholar
  44. Mohd Annas b. Mohd Nor. (2005). Future coal utilization in Malaysia. In: 2005 APEC Clean Fossil Energy Technical and Policy Seminar, 26–29th January, Cebu City Marriott Hotel, The Philippines.Google Scholar
  45. Moore, J., & Ramamoorthy, S. (1984). Heavy metals in natural waters. Berlin: Springer.Google Scholar
  46. Natusch, D. F. S., & Taylor, D. R. (1980). Environmental effects of western coal combustion: part IV. In Chemical and Physical Characterization of Coal Fly Ash (Report 600/3-80-093), U.S. Environmental Protection Agency, Washington, DC.)Google Scholar
  47. Navas, A. B. B., & Machin, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): controlling factors and environmental implications. Applied Geochemistry, 17(8), 961–973. doi: 10.1016/S0883-2927(02)00006-9.CrossRefGoogle Scholar
  48. Neathery, M. W., & Miller, W. J. (1977). Feedstuff (Aug), 18–20.Google Scholar
  49. Nriagu, J. O. (1978). The biogeochemistry of lead in the environment pp. 18–88. Amsterdam: Elsevier/North-Holland Biomedical.Google Scholar
  50. Nriagu, J. O. (1980). Nickel in the environment. New York: Wiley.Google Scholar
  51. Nugteren, H. W., Jassen-Jurkovicova, M., & Scarlett, B. (2001). Improvement of environmental quality of coal fly ash by applying forced leaching. Fuel, 80, 873–877. doi: 10.1016/S0016-2361(00)00163-0.CrossRefGoogle Scholar
  52. PECH (1980). Trace-element geochemistry of coal resource development related to environment quality and health. Washington, DC: National Academies.Google Scholar
  53. Pederson, A. J., Ottosen, L. M., & Villumsen, A. (2003). Electrodialytic removal of heavy metals from different fly ashes. Journal of Hazardous Materials, 100, 65–78. doi: 10.1016/S0304-3894(03)00064-5.CrossRefGoogle Scholar
  54. Reijnders, L. (2005). Disposal, uses and treatments of combustion ashes. Resources, Conservation and Recycling, 43, 313–336. Review doi: 10.1016/j.resconrec.2004.06.007.CrossRefGoogle Scholar
  55. Salanki, J., Balogh, K. V., & Berta, E. (1982). Heavy metals in animals of Lake Balaton. Water Research, 16, 1147–1152. doi: 10.1016/0043-1354(82)90132-4.CrossRefGoogle Scholar
  56. Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Berlin: Springer.Google Scholar
  57. Sippola, J. (1979). Selenium content of soils and timothy in Finland. Annales Agriculturae Fenniae, 18, 182.Google Scholar
  58. Standard Methods (1989). For the examination of water and wastewater. Washington, DC: APHA, AWWA, WPCF.Google Scholar
  59. Sunderman Jr, F. W., & Oskarsson, A. (1991). Nickel. In E. Merian (Ed.), Metals in their compounds in the environment (pp. 1101–1126). Weinheim and New York: VCH.Google Scholar
  60. Swaine, D. J. (1955). The trace element content of soils. Commonwealth Bureau of Soil Science Technical Communication, England, 48, 157 pp.Google Scholar
  61. Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.Google Scholar
  62. Trefry, J. H., & Presley, B. J. (1976). Heavy metal transport from the Mississippi River to the Gulf of Mexico. In H. L. Windom, & R. A. Duce (Eds.), Marine pollutant transfer (pp. 159–184). Lexington, MA: Lexington Books.Google Scholar
  63. Ure, A. M., & Berrow, M. L. (1982). The elemental constituents of soils. In H. J. M. Bowen (Ed.), Environmental chemistry, Vol. 2 (pp. 94–204). London: Royal Society of Chemistry.Google Scholar
  64. US EPA (1985). Ambient water quality criteria for copper—1984. Washington DC: U.S. Environmental Protection Agency, Office of Water Regulations and Standards.Google Scholar
  65. Vinogradov, A. P. (1959). The geochemistry of rare and dispersed chemical elements in soils. New York: Consultants Bureau.Google Scholar
  66. Warren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54, 261–320. doi: 10.1016/S0012-8252(01)00032-0.CrossRefGoogle Scholar
  67. WHO (World Health Organization)–IPCS (International Programme on Chemical Safety) (1988). Chromium, Environmental Health Crit. 61: Arsenic. Geneva: WHO.Google Scholar
  68. WHO (1981). Arsenic, Environ. Health Crit. 18: Arsenic. Geneva: International Programme on Chemical Safety.Google Scholar
  69. Wood, J. M. (1974). Biological cycles for toxic elements in the environment. Science, 183, 1049–1052. doi: 10.1126/science.183.4129.1049.CrossRefGoogle Scholar
  70. Wright, D. A., & Welbourn, P. (2002). Environmental toxicology. Cambridge, U.K.: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia
  2. 2.Faculty of Engineering, Department of Civil EngineeringUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations