Advertisement

Water, Air, and Soil Pollution

, 197:323 | Cite as

Silicon Effects on Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil

  • Karina Patrícia Vieira da Cunha
  • Clístenes Williams Araújo do NascimentoEmail author
Article

Abstract

Silicon presents a close relationship with the amelioration of heavy metals phytotoxicity. However, mechanisms of Si-mediated alleviation of metal stress remains poorly understood. This work aimed at studying the relationship between the accumulation of Si, Cd, and Zn and the tolerance and structural alterations displayed by maize plants grown on a Cd and Zn enriched soil treated with doses of Si (0, 50, 100, 150, and 200mg kg−1) as calcium silicate (CaSiO3). The results showed that the maize plants treated with Si presented not only biomass increasing but also higher metal accumulation. Significant structural alterations on xylem diameter, mesophyll and epidermis thickness, and transversal area occupied by collenchyma and midvein were also observed as a result of Si application. The deposition of silica in the endodermis and pericycle of roots seems to play an important role on the maize tolerance to Cd and Zn stress.

Keywords

Heavy metals Lignin Silica Cellular detoxification Soil pollution 

Notes

Acknowledgement

The authors are grateful to Dra. Rejane Pimentel for her aid on microscopical analysis and to CNPq for a doctoral scholarship to the senior author.

References

  1. Barceló, J., & Poschenrieder, C. (1990). Plant water relations as effected by heavy metal stress: a review. Journal of Plant Nutrition, 13, 1–37.CrossRefGoogle Scholar
  2. Boudet, A. M. (2000). Lignins and lignification: Selected issues. Plant Physiology & Biochemistry, 38(1/2), 81–96.CrossRefGoogle Scholar
  3. Bukatsch, F. (1972). Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos, 6, 255.Google Scholar
  4. Currie, H. A., & Perry, C. (2007). Silica in Plants: Biological, Biochemical and Chemical Studies. Ann Bot-London 1–7.Google Scholar
  5. Dayanandan, P., Kaufman, P. B., & Franklin, C. I. (1983). Detection of sílica in plants. American Journal of Botany, 70(7), 1079–1084.CrossRefGoogle Scholar
  6. Ederli, L., Reale, L., Ferranti, F., et al. (2004). Responses induced by high concentration of cadmium in Phragmites australis roots. Physiologia Plantarum, 121, 66–74.CrossRefGoogle Scholar
  7. EMBRAPA-Centro Nacional de Pesquisa de Solos (1999). Manual de análise química dos solos, plantas e fertilizantes. Rio de Janeiro: Embrapa Solos.Google Scholar
  8. Epstein, E. (1994). The anomaly of silicon in plant biology. P Natl Acad Sci-Biol, 91(1), 11–17.CrossRefGoogle Scholar
  9. Epstein, E. (1999). Silicon. Annual Review of Plant Physiology, 50, 641–664.CrossRefGoogle Scholar
  10. Gong, H. J., Zhu, X. Y., Chen, K. M., et al. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313–321.CrossRefGoogle Scholar
  11. Hossain, M. T., Mori, R., Wakabayashi, K. S. K., et al. (2002). Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research, 115, 23–27.CrossRefGoogle Scholar
  12. Iwasaki, K., Maier, P., Fecht, M., et al. (2002). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.)Walp.). Plant Soil, 238, 281–288.CrossRefGoogle Scholar
  13. Johansen, D. A. (1940). Plant microtechnique. New York: Mc Graw Hill.Google Scholar
  14. Kraus, J. E., & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR, Rio de JaneiroGoogle Scholar
  15. Liang, Y., Sun, W., Zhu, Y-G., et al. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147, 422–428.CrossRefGoogle Scholar
  16. Liang, Y., Wong, J. W. C., & Wei, L. (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58, 475–483.CrossRefGoogle Scholar
  17. Neumann, D., & Nieden, U. Z. (2001). Silicon and heavy metal tolerance of higher plant. Phytochemistry, 56, 685–692.CrossRefGoogle Scholar
  18. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1983). Biologia Vegetal. Rio de Janeiro: Guanabara Koogan.Google Scholar
  19. Rogalla, H., & Romheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumic sativus L. Plant, Cell & Environment, 25, 549–555.CrossRefGoogle Scholar
  20. Rout, G. R., & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23, 3–11.CrossRefGoogle Scholar
  21. SAS INSTITUTE (1999). Statistical analysis system: procedure guide for personal computer. Cary.Google Scholar
  22. Schützendübel, A., Schwanz, P., Teichmann, T., et al. (2001). Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiology, 127, 887–892.CrossRefGoogle Scholar
  23. Seregin, I. V., & Ivanov, V. B. (1997). Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology, 44, 791–796.Google Scholar
  24. Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 606–630.Google Scholar
  25. Shi, X. H., Zhang, C. C., Wang, H., et al. (2005). Effect of Si on the distribution of Cd in rice seedlings. Plant Soil, 272, 53–60.CrossRefGoogle Scholar
  26. Strasburger, E. (1924). Handbook of Practical Botany. New York: MacMillan.Google Scholar
  27. Vitória, A. P., Rodriguez, A. P. M., & Cunha, M. (2004). Structural changes in radish seedlings (Raphanus sativus) exposed to cadmium. Biologia Plantarum, 47, 561–568.CrossRefGoogle Scholar
  28. Vollenweider, P., Cosio, C., & Gunthardt-Goerg, M. S. (2005). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 1–16Google Scholar
  29. Wilcox, D. B., Dove, D., & Mcdavid, D. (2002). Greer Image Tool. San Antonio, Texas: University of Texas Health Science Center.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Karina Patrícia Vieira da Cunha
    • 1
  • Clístenes Williams Araújo do Nascimento
    • 1
    Email author
  1. 1.Department of AgronomyFederal Rural University of PernambucoRecifeBrazil

Personalised recommendations