Water, Air, and Soil Pollution

, Volume 197, Issue 1–4, pp 49–60

Reduction of Hexavalent Chromium in Soil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions

  • Débora V. Franco
  • Leonardo M. Da Silva
  • Wilson F. Jardim
Article
  • 597 Downloads

Abstract

Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0G (granulated elemental iron); ZVIne (non-stabilized zerovalent iron) and ZVIcol (colloidal zerovalent iron). ZVIcol was synthesized using different experimental conditions with carboxymethyl cellulose (CMC) and ultra-sound. Chemical analysis revealed that the contaminated soil (frank clay sandy texture) presented an average Cr(VI) concentration of 456 ± 35 mg kg−1. Remediation studies carried out under batch conditions indicated that 1.00 g of ZVIcol leads to a chemical reduction of ∼280 mg of Cr(VI). Considering the fractions of Cr(VI) present in soil (labile, exchangeable and insoluble), it was noted that after treatment with ZVIcol (semi-batch conditions and pH 5) only 2.5% of these species were not reduced. A comparative study using iron species was carried out in order to evaluate the reduction potentialities exhibited by ZVIcol. Results obtained under batch and semi-batch conditions indicate that application of ZVIcol for the “in situ” remediation of soil and groundwater containing Cr(VI) constitutes a promising technology.

Keywords

Contaminated soil Hexavalent chromium Carboxymethyl cellulose Colloidal zerovalent iron Chromium immobilization 

References

  1. Calder, L. M. (1988). Chromium contamination of groundwater. In J. O. Niagru, & E. Nieboer (Eds.), Chromium in the natural and human environments (pp. 215–229). New York: Wiley & Sons.Google Scholar
  2. Cao, J., & Zhang, W. X. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials B, 132(2–3), 213–219. doi:10.1016/j.jhazmat.2005.09.008.CrossRefGoogle Scholar
  3. Domenico, P. A., & Schwartz, F. W. (1979). Physical and chemical hydrogeology (2nd ed.). New York: Wiley & Sons.Google Scholar
  4. EPA (2000). In situ treatment of soil and groundwater contaminated with Chromium, Office of Research and Development, EPA/625/R-00/005, US, Environmental Protect Agency, Washington, D.C.Google Scholar
  5. Franco, D. V., Da Silva, L. M., & Jardim, W. F. (2008). Evaluation of reducing agents for the remediation of soil containing hexavalent chromium. Environmental Science & Technology, submitted.Google Scholar
  6. He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39(9), 3314–3320. doi:10.1021/es048743y.CrossRefGoogle Scholar
  7. He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46(1), 29–34. doi:10.1021/ie0610896.CrossRefGoogle Scholar
  8. James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1995). Hexavalent chromium extraction from soils: a comparison of five methods. Environmental Science & Technology, 29(9), 2377–2381. doi:10.1021/es00009a033.CrossRefGoogle Scholar
  9. Kataby, G., Cojocaru, M., Prozorov, R., & Gedanken, A. (1999). Coating carboxylic acids on amorphous iron nanoparticles. Langmuir, 15(5), 1703–1708. doi:10.1021/la981001w.CrossRefGoogle Scholar
  10. Kataby, G., Prozorov, T., Koltypin, Y., Cohen, H., Sukenik, C., Ulman, A., et al. (1997). Self-assembled monolayer coating and amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir, 13(23), 6151–6158. doi:10.1021/la960929q.CrossRefGoogle Scholar
  11. Kim, D. K., Mikhaylova, M., Zhang, Y., & Muhammed, M. (2003). Protective coating of superamagnetic iron oxide nanoparticles. Chemistry of Materials, 15(8), 1617–1627. doi:10.1021/cm021349j.CrossRefGoogle Scholar
  12. Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29(1), 1–46. doi:10.1080/10643389991259164.CrossRefGoogle Scholar
  13. Magdassi, S., Bassa, A., Vinetsky, Y., & Kamyshny, A. (2003). Silver nanoparticles as pigments for water-based ink-jet inks. Chemistry of Materials, 15(11), 2208–2217. doi:10.1021/cm021804b.CrossRefGoogle Scholar
  14. Suslick, K. S., Fang, M., & Hycon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961. doi:10.1021/ja961807n.CrossRefGoogle Scholar
  15. Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health and Perspectives, 92, 25–40.CrossRefGoogle Scholar
  16. Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) e Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569. doi:10.1021/es9911420.CrossRefGoogle Scholar
  17. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193. doi:10.1021/cm0218108.CrossRefGoogle Scholar
  18. Seaman, J. C., Bertsch, P. M., & Schwallie, L. (1999). In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science & Technology, 33(6), 938–944. doi:10.1021/es980546+.CrossRefGoogle Scholar
  19. Si, S., Kotal, A., Mandal, T., Giri, S., Nakamura, H., & Kohara, T. (2004). Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 16(18), 3489–3496. doi:10.1021/cm049205n.CrossRefGoogle Scholar
  20. Su, C., & Ludwig, R. D. (2005). Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology, 39(16), 6208–6216. doi:10.1021/es050185f.CrossRefGoogle Scholar
  21. Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetic nanoparticles. Journal of the American Chemical Society, 124(28), 8204–8205. doi:10.1021/ja026501x.CrossRefGoogle Scholar
  22. Tokunaga, T. K., Wan, J., Firestone, M. K., Hazen, T. C., Schwartz, E., Sutton, S. R., et al. (2001). Chromium diffusion and reduction in soil aggregates. Environmental Science & Technology, 35(15), 3196–3174. doi:10.1021/es010523m.CrossRefGoogle Scholar
  23. Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41(10), 2101–2108. doi:10.1016/j.watres.2007.02.037.CrossRefGoogle Scholar
  24. Zhang, W. X., Wang, C. B., & Lien, H. L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4), 387–395. doi:10.1016/S0920-5861(98)00067-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Débora V. Franco
    • 1
  • Leonardo M. Da Silva
    • 2
  • Wilson F. Jardim
    • 1
  1. 1.Institute of ChemistryLQA—UNICAMPCampinasBrazil
  2. 2.Department of ChemistryFACESA—UFVJMDiamantinaBrazil

Personalised recommendations