Water, Air, and Soil Pollution

, Volume 196, Issue 1–4, pp 169–181 | Cite as

Simulated Summertime Regional Ground-Level Ozone Concentrations over Greece

  • Anastasia PoupkouEmail author
  • Dimitrios Melas
  • Ioannis Ziomas
  • Panagiotis Symeonidis
  • Iraklis Lisaridis
  • Evangelos Gerasopoulos
  • Christos Zerefos


Ground-level ozone concentrations were estimated for Greece during a summer period of the year 2000 using the regional air quality model UAM-V off-line coupled with the mesoscale meteorological model MM5. An anthropogenic NOx, NMVOCs and CO emission inventory and biogenic NMVOCs emission data were used to support model simulations. The evaluation analysis indicates a quite satisfactory model performance in reproducing ozone levels. The simulated mean ozone concentrations are above the 32-ppb EU phytotoxicity limit over almost all continental and maritime areas of Greece. Over the greater part of the country, the background mean ozone levels range from 40 to 55 ppb. Ozone values higher than the 55-ppb EU human health protection limit reaching 60 ppb dominate part of the southern Aegean Sea that is influenced by the Athens urban plume. In the areas where anthropogenic emission densities are high, the mean ozone levels vary between 20 and 40 ppb. Over the greater part of Greece, the simulated mean daily maximum ozone concentrations range from 50 to 65 ppb. More enhanced maximum ozone concentrations up to 95 ppb mainly dominate over the greater areas of the two largest Greek urban centres (Athens and Thessaloniki) and over the continental and maritime areas south of Athens which are under the influence of the urban plume.


Air quality modelling Ozone Greece 



The research study was financed by the European Commission (6th Framework Programme, Priority: 1.4.2 SPACE/GMES, Priority Title: Priority 4: Aeronautics and Space, Call Identifier FP6-2003-SPACE-1, OJ REFERENCE OJ C303 of 13.12.2003, Research project ‘‘Global and regional Earth-system Monitoring using Satellite and in-situ data’’, contract no.: 516099) and by the General Secretariat for Research and Technology of the Ministry of Development of Greece (3RD Community Support Framework (2000–2006), Operational Program «Competitiveness» (ΕPΑΝ), Measure 4.3, Action, research project ‘‘Impact of the meteorological parameters on the gaseous pollutants transport in the atmosphere’’). We would like to thank Dr N. Mihalopoulos for the maintenance of the ozone data of the monitoring site in Finokalia and for his helpful comments.


  1. Bossioli, E., Tombrou, M., Dandou, A., & Soulakellis, N. (2007). Simulation of the effects of critical factors on ozone formation and accumulation in the greater Athens area. Journal of Geophysical Research, 112, D02309. DOI  10.1029/2006JD007185.CrossRefGoogle Scholar
  2. Chalita, S., Hauglustaine, D. A., Le Treut, H., & Muller, J.-F. (1996). Radiative forcing due to increased tropospheric ozone concentrations. Atmospheric Environment, 30, 1641–1646. DOI  10.1016/1352-2310(95)00431-9.CrossRefGoogle Scholar
  3. EEA (1997). CORINAIR 94 inventory. European topic centre on air emissions, Topic report No 8/1997. Copenhagen: European Environmental Agency. Retrieved January 2004 from
  4. EMEP/CORINAIR (2002). Atmospheric emission inventory guidebook (3rd ed.). Copenhagen: European Environment Agency Retrieved January 2004 from Scholar
  5. EMEP/MSC-W (2002). Emission data reported to UNECE/EMEP: Quality assurance and trend analysis & Presentation of WebDab. MSC-W Status Report 2002, EMEP/MSC-W NOTE 1/2002. Retrieved January 2004 from
  6. EPA (1991). Guideline for regulatory applications of the urban airshed model. US Environmental Protection Agency Report EPA-450/4-91-013, EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC, 89 pp.Google Scholar
  7. Gerasopoulos, E. (2003). Using 7 Be and O 3 to study the stratospheric intrusions in the troposphere. PhD dissertation. Greece: Aristotle University of Thessaloniki (in Greek).Google Scholar
  8. Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Donoussis, C., Mihalopoulos, N., & Kanakidou, M. (2006). Photochemical ozone production in the Eastern Mediterranean. Atmospheric Environment, 40, 3057–3069. DOI  10.1016/j.atmosenv.2005.12.061.CrossRefGoogle Scholar
  9. Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Kanakidou, M., & Mihalopoulos, N. (2005). Ozone variability in the marine boundary layer of the eastern Mediterranean based on 7-year observations. Journal of Geophysical Research, 110, D15309. DOI  10.1029/2005JD005991.CrossRefGoogle Scholar
  10. Glavas, S. (1999). Surface ozone and NOx concentrations at a high altitude Mediterranean site, Greece. Atmospheric Environment, 33, 3813–3820. DOI  10.1016/S1352-2310(98)00393-8.CrossRefGoogle Scholar
  11. Grell, G. A., Dudhia, J., & Stauffer, D. R.(1995). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-398+STR. Retrieved January 2005 from
  12. Jonson, J. E., Kylling, A., Berntsen, T., Isaksen, I. S. A., Zerefos, C. S., & Kourtidis, K. (2000). Chemical effects of UV fluctuations inferred from total ozone and tropospheric aerosol variations. Journal of Geophysical Research, 105, 14561–14574. DOI  10.1029/1999JD901130.CrossRefGoogle Scholar
  13. Kalabokas, P. D., Viras, L. G., Bartzis, J. G., & Repapis, C. C. (2000). Mediterranean rural ozone characteristics around the urban area of Athens. Atmospheric Environment, 34, 5199–5208. DOI  10.1016/S1352-2310(00)00298-3.CrossRefGoogle Scholar
  14. Kalabokas, P. D., Volz-Thomas, A., Brioude, J., Thouret, V., Cammas, J.-P., & Repapis, C. C. (2007). Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe. Atmospheric Chemistry and Physics, 7, 3783–3790.Google Scholar
  15. Kallos, G., Kotroni, V., Lagouvardos, K., & Papadopoulos, A. (1998). On the longrange transport of air pollutants from Europe to Africa. Geophysical Research Letters, 25, 619–622. DOI  10.1029/97GL03317.CrossRefGoogle Scholar
  16. Kambezidis, H. D., Weidauer, D., Melas, D., & Ulbricht, M. (1998). Air quality in the Athens basin during sea breeze and non-sea breeze days using laser-remote-sensing technique. Atmospheric Environment, 32, 2173–2182. DOI  10.1016/S1352-2310(97)00409-3.CrossRefGoogle Scholar
  17. Kang, D., Aneja, V. P., Mathur, R., & Ray, J. D. (2003). Nonmethane hydrocarbons and ozone in three rural southeast United States national parks: A model sensitivity analysis and comparison to measurements. Journal of Geophysical Research, 108, 4604. DOI  10.1029/2002JD003054.CrossRefGoogle Scholar
  18. Kassomenos, P. A., Sindosi, O. A., Lolis, C. J., & Chaloulakou, A. (2003). On the relation between seasonal synoptic circulation types and spatial air quality characteristics in Athens, Greece. Journal of the Air & Waste Management Association, 53, 309–324.Google Scholar
  19. Klemm, O., Ziomas, I., Balis, D., Suppan, P., Slemr, J., Romero, R., et al. (1998). A summer air-pollution study in Athens, Greece. Atmospheric Environment, 32, 2071–2087. DOI  10.1016/S1352-2310(97)00424-X.CrossRefGoogle Scholar
  20. Kotroni, V., Kallos, G., Lagouvardos, K., Varinou, M., & Walko, R. (1999). Numerical simulations of the meteorological and dispersion conditions during an air pollution episode over Athens, Greece. Journal of Applied Meteorology, 38, 432–447. DOI  10.1175/1520-0450(1999)038<0432:NSOTMA>2.0.CO;2.CrossRefGoogle Scholar
  21. Kourtidis, K., Zerefos, C., Rapsomanikis, S., Simeonov, V., Balis, D., Perros, P. E., et al. (2002). Regional levels of ozone in the troposphere over eastern Mediterranean. Journal of Geophysical Research, 107(D18), 8140. DOI  10.1029/2000JD000140.CrossRefGoogle Scholar
  22. Kourtidis, K., Ziomas, I., Zerefos, C., Balis, D., Suppan, P., Vasaras, A., et al. (1997). On the background ozone values in Greece. In B. Larsen, B. Versino & G. Angeletti (Eds.), The oxidizing capacity of the troposphere (pp. 387–390). Eur. Union. Rep. EUR 17482, Eur. Union, Brussels.Google Scholar
  23. Kouvarakis, G., Tsigaridis, K., Kanakidou, M., & Mihalopoulos, N. (2000). Temporal variations of surface regional background ozone over Crete Island in southeast Mediterranean. Journal of Geophysical Research, 105, 4399–4407. DOI  10.1029/1999JD900984.CrossRefGoogle Scholar
  24. Kouvarakis, G., Vrekoussis, M., Mihalopoulos, N., Kourtidis, K., Rappengluck, B., Gerasopoulos, E., et al. (2002). Spatial and temporal variability of tropospheric ozone (ozone) in the boundary layer above the Aegean Sea. Journal of Geophysical Research, 107(D18), 8137. DOI  10.1029/2000JD000081.CrossRefGoogle Scholar
  25. Lazaridis, M., Eleftheriadis, K., Smolik, J., Colbeck, I., Kallos, G., Drossinos, Y., et al. (2006). Dynamics of fine particles and photo-oxidants in the Eastern Mediterranean (SUB-AERO). Atmospheric Environment, 40, 6214–6228. DOI  10.1016/j.atmosenv.2005.06.050.CrossRefGoogle Scholar
  26. Lazaridis, M., Spyridaki, A., Solberg, S., Kallos, G., Svendby, T., Flatøy, F., et al. (2004). Modeling of combined aerosol and photooxidant processes in the Mediterranean area. Water, Air, and Soil Pollution, 4, 3–21.Google Scholar
  27. Lazaridis, M., Spyridaki, A., Solberg, S., Smolik, J., Zdimal, V., Eleftheriadis, K., et al. (2005). Mesoscale modeling of combined aerosol and photo-oxidant processes in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 5, 927–940.Google Scholar
  28. Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., et al. (2002). Global air pollution crossroads over the Mediterranean. Science, 298, 794–799, Medline. DOI  10.1126/science.1075457.CrossRefGoogle Scholar
  29. Melas, D., Ziomas, I., Klemm, O., & Zerefos, C. (1998a). Anatomy of sea breeze circulation in Greater Athens under weak large-scale ambient winds. Atmospheric Environment, 32, 2223–2237. DOI  10.1016/S1352-2310(97)00420-2.CrossRefGoogle Scholar
  30. Melas, D., Ziomas, I., Klemm, O., & Zerefos, C. (1998b). Flow dynamics in Athens area under moderate large-scale winds. Atmospheric Environment, 32, 2209–2222. DOI  10.1016/S1352-2310(97)00436-6.CrossRefGoogle Scholar
  31. Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S., & Bousquet, P. (1997). Tropospheric aerosol ionic composition above the Eastern Mediterranean Area. Tellus. Series B, Chemical and Physical Meteorology, 314–326. DOI  10.1034/j.1600-0889.49.issue3.7.x.
  32. Peleg, M., Luria, M., Sharf, G., Vanger, A., Kallos, G., Kotroni, V., et al. (1997). Observational evidence of an ozone episode over the Greater Athens Area. Atmospheric Environment, 31, 3969–3983. DOI  10.1016/S1352-2310(97)00251-3.CrossRefGoogle Scholar
  33. Poupkou, A., Symeonidis, P., Ziomas, I., Melas, D., & Markakis, K. (2007). A spatially and temporally disaggregated anthropogenic emission inventory in the southern Balkan Region.. Water, Air, and Soil Pollution, 185, 335–348. DOI  10.1007/s11270-007-9457-2.CrossRefGoogle Scholar
  34. Roelofs, G. J., Lelieveld, J., & van Dorland, R. (1997). A three-dimensional chemistry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing. Journal of Geophysical Research, 102, 23389–23401. DOI  10.1029/97JD02210.CrossRefGoogle Scholar
  35. Roelofs, G. J., Scheeren, H. A., Heland, J., Ziereis, H., & Lelieveld, J. (2003). A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001). Atmospheric Chemistry and Physics, 3, 1199–1210.CrossRefGoogle Scholar
  36. SAI (1999). User’s guide to the variable-grid Urban Airshed Model (UAM-V). Systems Applications International Inc., SYSAPP 99–95/27r3.Google Scholar
  37. Sciare, J., Bardouki, H., Moulin, C., & Mihalopoulos, N. (2003). Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime. Atmospheric Chemistry and Physics, 3, 291–302.Google Scholar
  38. Seinfeld, J., & Pandis, S. (1998). Atmospheric chemistry and physics. From air pollution to climate change. WileyGoogle Scholar
  39. Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., et al. (1999). Inventorying emissions from nature in Europe. Journal of Geophysical Research, 104, 8113–8152. DOI  10.1029/98JD02747.CrossRefGoogle Scholar
  40. Svensson, G. (1998). Model simulations of the air quality in Athens, Greece, during the MEDCAPHOT-TRACE campaign. Atmospheric Environment, 32, 2239–2268. DOI  10.1016/S1352-2310(97)00427-5.CrossRefGoogle Scholar
  41. Symeonidis, P., Poupkou, A., Gkantou, A., Melas, D., Yay, O. D., Pouspourika, E., et al. (2008). Development of a computational system for estimating biogenic NMVOCs emissions based on GIS technology. Atmospheric Environment, 42, 1777–1789. DOI  10.1016/j.atmosenv.2007.11.019.CrossRefGoogle Scholar
  42. Symeonidis, P., Ziomas, I., & Proyou, A. (2004). Development of an emission inventory system from transport in Greece. Environmental Modelling & Software, 19, 413–421. DOI  10.1016/S1364-8152(03)00140-3.CrossRefGoogle Scholar
  43. Tao, Z., Larson, M. S., Wuebbles, J. D., Williams, A., & Caughey, M. (2003). A summer simulation of biogenic contributions to ground-level ozone over the continental United States. Journal of Geophysical Research, 108(D14), 4404. DOI  10.1029/2002jd002945.CrossRefGoogle Scholar
  44. Tzoumaka, P. (1998). Air pollution over Greece. PhD dissertation. Greece: Aristotle University of Thessaloniki, (in Greek).Google Scholar
  45. Zerefos, C. (1998). Photochemical Activity and Solar Ultraviolet Radiation (PAUR). Final Report. Contract ENV4-CT95-0048, Environ. Res. Program, Eur. Comm., Brussels.Google Scholar
  46. Zerefos, C., Kourtidis, K., Balis, D., Bais, A., & Calpini, B. (2001). Photochemical activity over the eastern Mediterranean under variable environmental conditions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 26(7), 549–554. DOI  10.1016/S1464-1917(01)00045-9.CrossRefGoogle Scholar
  47. Zerefos, C., Kourtidis, K., Melas, D., Balis, D. S., Zanis, P., Mantis, H. T., et al. (2002). Photochemical Activity and Solar Ultraviolet Radiation Modulation Factors (PAUR): An overview of the project. Journal of Geophysical Research, 107, D18. DOI  10.1029/2000JD000134.CrossRefGoogle Scholar
  48. Ziomas, I. (1998). The Mediterranean Campaign of Photochemical Tracers Transport and chemical evolution (MEDCAPHOT-TRACE): An outline. Atmospheric Environment, 32, 2045–2053. DOI  10.1016/S1352-2310(97)00413-5.CrossRefGoogle Scholar
  49. Ziomas, I., Suppan, P., Rappengluck, B., Balis, D., Tzoumaka, P., Melas, D., et al. (1995). A contribution to the study of photochemical smog in the greater Athens area. Contributions to Atmospheric Physics, 68, 191–203.Google Scholar
  50. Ziomas, I., Tzoumaka, P., Balis, D., Melas, D., Zerefos, C., & Klemm, O. (1998). Ozone episodes in Athens, Greece. A modelling approach using data from the MEDCAPHOT-TRACE. Atmospheric Environment, 32, 2313–2321. DOI  10.1016/S1352-2310(97)00414-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Anastasia Poupkou
    • 1
    Email author
  • Dimitrios Melas
    • 1
  • Ioannis Ziomas
    • 2
  • Panagiotis Symeonidis
    • 1
  • Iraklis Lisaridis
    • 1
  • Evangelos Gerasopoulos
    • 3
  • Christos Zerefos
    • 4
  1. 1.Department of Physics, Laboratory of Atmospheric PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Chemical EngineeringNational Technical University of AthensAthensGreece
  3. 3.Institute of Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  4. 4.Laboratory of Climatology and Atmospheric EnvironmentNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations