Advertisement

Water, Air, and Soil Pollution

, 195:151 | Cite as

Cesium Concentration Spatial Distribution Modeling by Point Cumulative Semivariogram

  • Fatih Külahcı
  • Zekâi Şen
  • Sefa Kazanç
Article

Abstract

The theoretical basis of the proposed technique is the cumulative variation of 137Cs measurements’ squared-differences between a reference and other sites. The change of the cumulative squared-differences with distance from the reference site is referred to as the point cumulative semivariogram (PCSV), which provides appropriate measure of cumulative similarity. Inspection of individual experimental PCSV provides local interpretation about the 137Cs radioactivity concentration around each site, whereas collective inspections provide possibility for grouping similar sites and hence identifying homogeneous sub-areas within the study area. It is also possible to prepare 137Cs radioactivity concentration maps based on pre-specified distances in each experimental PCSV, which lead to similarity levels. Such maps provide appreciation of 137Cs radioactivity concentration regional dependence in Keban Dam Lake, Turkey. Apart from the individual PCSV interpretations, the whole lake is divided into four distinctive classes.

Keywords

Cesium Model Heterogeneity Lake Radioactivity Point cumulative semivariogram 

Notes

Acknowledgements

This work is a part of the post-doctorate research project supported by The Scientific and Technical Research Council of Turkey (TUBITAK). The authors would like to thank TUBITAK for financial support and encouragement.

References

  1. Bazuhair, A. S. A., & Şen, Z. (1994). Cumulative semivariogram models of trace elements from springs in Saudi Arabia. Nordic Hydrology, 25, 345–358.Google Scholar
  2. Clark, I. (1979). The semivariogram-Part 1. Engineering and Mining Journal, 7, 90–94.Google Scholar
  3. Gómez, P., Garralón, A., Buil, B., Turrero, M. J., Sánchez, L., & de la Cruz, B. (2006). Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Science of the Total Environment, 366, 295–309 Medline. DOI  10.1016/j.scitotenv.2005.06.024.CrossRefGoogle Scholar
  4. Håkanson, L., & Boulion, V. V. (2003). A model to predict how individual factors influence secchi depth variations among and within Lakes. International Review of Hydrobiology, 88, 212–232. DOI  10.1002/iroh.200390016.CrossRefGoogle Scholar
  5. Hárdle, W., & Simar, L. (2003). Applied multivariate statistical analysis, 22nd ed. Tech Method & Data Technologies.Google Scholar
  6. Harms, I. H. (1997). Modelling the dispersion of 137Cs and 239Pu released from dumped waste in the Kara Sea. Journal of Marine Systems, 13, 1–19. DOI  10.1016/S0924-7963(96)00117-0.CrossRefGoogle Scholar
  7. Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (p. 561). New York: Oxford University Press.Google Scholar
  8. Jaworowski, Z., Hoff, P., Hagen, J. O., & Maczek, W. (1997). A highly radioactive Chernobyl deposit in a Scandinavian Glacier. Journal of Environmental Radioactivity, 35, 91–108. DOI  10.1016/S0265-931X(96)00004-5.CrossRefGoogle Scholar
  9. Johnson, R. A., & Wichern, D. W. (1982). Applied multivariate statistical analysis (p. 816). New Jersey: Prentice Hall.Google Scholar
  10. Joshi, B., & Maule, C. (2000). Simple analytical models for interpretation of environmental tracer profiles in the vadose zone. Hydrological Processes, 14, 1503–1521. DOI 10.1002/1099-1085(20000615)14:8<1503::AID-HYP990>3.0.CO;2-Z.CrossRefGoogle Scholar
  11. Journel, A. G., & Huijbregts, C. J. (1989). Mining geostatistics (p. 600). New York: Academic.Google Scholar
  12. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.CrossRefGoogle Scholar
  13. Monte, L. (1998). Predicting the long term behaviour of 90Sr in lacustrine systems by a collective model. Ecological Modelling, 106, 141–159. DOI  10.1016/S0304-3800(97)00189-0.CrossRefGoogle Scholar
  14. Özmen, H., Külahcı, F., Çukurovalı, A., & Dogru, M. (2004). Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elazığ, Turkey). Chemosphere, 55, 401–408 Medline. DOI  10.1016/j.chemosphere.2003.11.003.CrossRefGoogle Scholar
  15. Şahin, A. D., & Şen, Z. (2004). A new spatial prediction model and its application to wind records. Theoretical and Applied Climatology, 79, 45–54. DOI  10.1007/s00704-004-0037-8.CrossRefGoogle Scholar
  16. Şen, Z. (1989). Cumulative semivariogram model of regionalized variables. Mathematical Geology, 21, 891–903. DOI  10.1007/BF00894454.CrossRefGoogle Scholar
  17. Şen, Z. (1995). Regional air pollution assessment by cumulative semivariogram technique. Atmospheric Environment, 29, 543–548. DOI  10.1016/1352-2310(94)00246-H.CrossRefGoogle Scholar
  18. Şen, Z. (1996). The integral of the semivariogram: a powerful method for adjusting the semivariogram. Mathematical Geology, 28, 371–373. DOI  10.1007/BF02083207.CrossRefGoogle Scholar
  19. Şen, Z. (1998). Point cumulative semivariogram for identification of heterogeneities in Regional Seismicity of Turkey. Mathematical Geology, 30, 767–787. DOI  10.1023/A:1021704507596.CrossRefGoogle Scholar
  20. Şen, Z. (1999). Terrain topography classification for wind energy generation. Renew Energy, 16, 904–907. DOI  10.1016/S0960-1481(98)00304-8.CrossRefGoogle Scholar
  21. Şen, Z., & Habib, Z. Z. (1998). Point cumulative semivariogram of areal precipitation in mountainous regions. Journal of Hydrology, 205, 81–91. DOI  10.1016/S0022-1694(97)00146-7.CrossRefGoogle Scholar
  22. Taylor, G. I. (1925). Eddy motion in the atmosphere. Philosophical transactions of the Royal Society of London, 215, 1.CrossRefGoogle Scholar
  23. Van der Perk, M., Lev, T., Gillett, A. G., et al. (2000). Spatial modelling of transfer of long-lived radionuclides from soil to agricultural products in the Chernigov region, Ukraine. Ecological Modelling, 128, 35–50. DOI  10.1016/S0304-800(99)00225-2.CrossRefGoogle Scholar
  24. Yoschenko, V. I., Kashparov, V. A., Levchuk, S. E., Glukhovskiy, A. S., Khomutinin, Y. V., et al. (2006). Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process. Journal of Environmental Radioactivity, 87, 260–278 Medline. DOI  10.1016/j.jenvrad.2005.12.003.CrossRefGoogle Scholar
  25. Zhang, J. (2002). Uncertainty in geographical information (p. 277). London, UK: CRC.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Science and Arts Faculty, Physics DepartmentFırat UniversityElazığTurkey
  2. 2.Civil Engineering Faculty, Hydraulics DepartmentIstanbul Technical UniversityIstanbulTurkey
  3. 3.Faculty of Education, Department of Science and Mathematics Teaching, Physics Teaching ProgrammeFırat UniversityElazığTurkey

Personalised recommendations