Water, Air, and Soil Pollution

, Volume 194, Issue 1–4, pp 243–257 | Cite as

Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain)

  • Javier Sánchez España
  • Elena González Toril
  • Enrique López Pamo
  • Ricardo Amils
  • Marta Diez Ercilla
  • Esther Santofimia Pastor
  • Patxi San Martín-Úriz
Article

Abstract

This work describes recent research carried out in an extremely acidic (pH 0.61–0.82) and hypersaline (e.g., 134 g/L SO42-, 74 g/L Fe, 7.5 g/L Al, 3 g/L Mg, 2 g/L Cu, 1 g/L Zn) leachate which seeps from a pyrite pile in San Telmo mine (Huelva, SW Spain) and forms evaporative pools of ultra-concentrated water in which attractive crystals of Zn-rich melanterite (FeIISO4 7H2O) are formed. Geochemical modeling with the Pitzer method indicates that the acidic brine was near saturation with respect to melanterite (SIMel = 0 ± 0.2). The microbiological investigation has revealed a surprisingly high biomass (1.4 × 106 cells mL−1) and an exotic ecosystem composed of acidophilic, Fe-oxidizing archaea (mainly Ferroplasma spp., representing 52% of the microbial population), and minor numbers of acidophilic bacteria (including Leptospirillum spp. (3.2%), Acidithiobacillus spp. (1.6%), and Alphaproteobacteria (2.8%)). The microbial production of FeIII allows the oxidative dissolution of pyrite and other sulphides, which results in additional inputs of FeII, SO42- and acidity to the system. The surfaces of the pyrite crystals show a typical etch-pitted texture, as well as blobs of elemental sulphur, which are both compatible with this indirect, microbially mediated oxidation mechanism. The composition of the acidic leachate seems to result from the combination of several processes which include: (1) formation of melanterite within the pile during relatively dry seasons, (2) subsequent dissolution of melanterite during rainy episodes, (3) microbial oxidation of FeII, (4) sulphide oxidation mediated by FeIII, (5) dissolution of chlorite and other aluminosilicates present in the pile, and (6) cooling and/or evaporation of seepage from the pile and consequent melanterite precipitation.

Keywords

Acidophilic archaea Fe2+ Fe3+ Melanterite solubility Pyrite oxidation 

References

  1. Aguilera, A., Manrubia, S. C., Gómez, F., Rodríguez, N., & Amils, R. (2006). Eukaryotic community distribution and its relationship to water physicochemical parameters in an extremely acidic environment, Río Tinto (Southwestern Spain). Applied and Environmental Microbiology, 72(8), 5325–5330.CrossRefGoogle Scholar
  2. Alpers, C. N., & Nordstrom, D. K. (1991). Evolution of extremely acid mine waters at Iron mountain, California—are there any lower limits to pH? Paper presented at the 2nd International Conference on the abatement of acidic drainage, MEND (Mine Environment Neutral Drainage), Ottawa, Canada, 2, 321–342Google Scholar
  3. Alpers, C. N., & Nordstrom, D. K. (1999). Geochemical modeling of water–rock interactions in mining environments. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 289–323Google Scholar
  4. Alpers, C. N., Nordstrom, D. K., & Thompson, J. M. (1994). Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. In C. N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium series 550 (pp. 324–344). Washington, DC: American Chemical Society Symposium.Google Scholar
  5. Alpers, C. N., Nordstrom, D. K., & Spitzley, J. (2003). Extreme acid mine drainage from a pyritic massive sulphide deposit: The iron mountain end-member. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 407–430). Vancouver: Mineralogical Association of Canada.Google Scholar
  6. Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., & Allen, E. E. (2006). Lineages of acidophilic archaea revealed by community genomic analyses. Science, 314, 1933–1935.CrossRefGoogle Scholar
  7. Ball, J. W., & Nordstrom, D. K. (1991). User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open-File Report, 91-183 p. 189. Denver: USGS.Google Scholar
  8. Blowes, D. W., Reardon, E. J., Jambor, J. L., & Cherry, J. A. (1991). The formation and potential importance of cemented layers in inactive sulphide mine tailings. Geochimica et Cosmochimica Acta, 55, 965–978.CrossRefGoogle Scholar
  9. Bond, P. L., Druschel, G. K., & Banfield, J. F. (2000a). Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.CrossRefGoogle Scholar
  10. Bond, P. L., Smriga, S. P., & Banfield, J. F. (2000b). Phylogeny of microorganism populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 3842–3849.CrossRefGoogle Scholar
  11. Baumler, D. J., Jeong, K. C., Fox, B. G., Banfield, J. F., & Kaspar, C. W. (2005). Sulfate requirement for heterotrophic growth of “Ferroplasma acidarmanus” strain fer1. Research in Microbiology, 156, 492–498.CrossRefGoogle Scholar
  12. Druschel, G. K., Baker, B. J., Gihring, T. M., & Banfield, J. F. (2004). Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions, 5-2, 13–32.CrossRefGoogle Scholar
  13. Edwards, K. J., Schrenk, M. O., Hamers, R., & Banfield, J. F. (1998). Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. American Mineralogist, 83, 1444–1453.Google Scholar
  14. Edwards, K. J., Gihring, T. M., & Banfield, J. F. (1999). Seasonal variations in microbial populations and environmental conditions at an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65, 3627–3632.Google Scholar
  15. Edwards, K. J., Bond, P. L., Gihring, T. M., & Banfield, J. F. (2000). An archaeal Fe-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.CrossRefGoogle Scholar
  16. Frau, F. (2000). The formation-dissolution precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: Environmental implications. Mineralogical Magazine, 64, 995–1006.CrossRefGoogle Scholar
  17. González-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R., & Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and Environmental Microbiology, 6, 4853–4865.CrossRefGoogle Scholar
  18. Johnson, D. B. (2006). Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy, 83, 153–166.CrossRefGoogle Scholar
  19. Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall, Inc.Google Scholar
  20. López-Archilla, A. I., & Amils, R. (1999). A comparative ecological study of two acidic rivers in southwestern Spain. Microbial Ecology, 38, 146–156.CrossRefGoogle Scholar
  21. López-Archilla, A. I., Marín, I., & Amils, R. (2001). Microbial community composition and ecology of an acidic aquatic environment: the Tinto river, Spain. Microbial Ecology, 41(1), 20–35.Google Scholar
  22. Nordstrom, D. K. (1999). Some fundamentals of aqueous geochemistry. In: G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 117–123.Google Scholar
  23. Nordstrom, D. K. (2004). Modeling low-temperature geochemical processes: Treatise on geochemistry. In H. D. Holland, K. K. Turekian, & J. I. Drever (Eds.), Surface and ground water, weathering, and soils, vol. 5 (pp. 37–72). Amsterdam: Elsevier Pergamon.Google Scholar
  24. Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, part a. processes, techniques, and health issues: Society of economic geologists. Reviews in Economic Geology, 6A, 133–156.Google Scholar
  25. Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology, 34, 254–258.CrossRefGoogle Scholar
  26. Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigation Report 99-4259 p. 312. Denver: USGS.Google Scholar
  27. Pernthaler, A., Pernthaler, J., & Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition (CARD) for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.CrossRefGoogle Scholar
  28. Pitzer, K. S. (1986). Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure and Applied Chemistry, 58(12), 1599–1610.CrossRefGoogle Scholar
  29. Ptacek, C. J., & Blowes, D. W. (1994). Influence of siderite on the pore-water chemistry of inactive mine-tailings impoundments. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 172–189). Washington, DC: American Chemical Society Symposium.Google Scholar
  30. Ptacek, C. J., & Blowes, D. W. (2000). Prediction of sulphate mineral solubility in concentrated waters. In C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Sulphate minerals: Crystallography, geochemistry, and environmental significance. Reviews in Mineralogy and Geochemistry, 40, 513–540.Google Scholar
  31. Ptacek, C. J., & Blowes, D. W. (2003). Geochemistry of concentrated waters at mine-waste sites. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 239–252). Vancouver: Mineralogical Association of Canada.Google Scholar
  32. Rimstidt, J. D., Chermak, J. A., & Gagen, P. M. (1994). Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 2–13). Washington, DC: American Chemical Society Symposium.Google Scholar
  33. Rowe, O. F., Sánchez-España, J., Hallberg, K. B., & Johnson, D. B. (2007). Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 9(7), 1761–1771.CrossRefGoogle Scholar
  34. Sánchez-España, F. J. (2000) Mineralogy and geochemistry of the massive sulphide deposits of the Northern area of the Iberian Pyrite Belt (San Telmo-San Miguel-Peña del Hierro), Huelva, Spain. Dissertation, University of the Basque CountryGoogle Scholar
  35. Sánchez-España, F. J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20(7), 1320–1356.CrossRefGoogle Scholar
  36. Sánchez-España, F. J., López-Pamo, E., & Santofimia, E. (2007a). The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel river watershed, Huelva): Field and laboratory rates. Journal of Geochemical Exploration, 92, 120–132.CrossRefGoogle Scholar
  37. Sánchez-España, F. J., Santofimia, E., González-Toril, E., San Martín-Úriz, P., López Pamo, E., & Amils, R. (2007b). Physicochemical and microbiological stratification of a meromictic, acidic mine pit lake (San Telmo, Iberian Pyrite Belt). In Rosa. Cidu, & Franco Frau (Eds.), Paper presented at the Symposium of the International Mine Water Association IMWA 2007: Water in Mining Environments (pp. 447–451), Cagliari, Italy.Google Scholar
  38. Sánchez-España, F. J., López-Pamo, E., Santofimia, E., & Diez-Ercilla, M. (2008). The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Applied Geochemistry, 23, 1260–1287.Google Scholar
  39. Sand, W., Gehrke, T., Jozsa, P. G., & Schippers, A. (2001). (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy, 59, 159–175.CrossRefGoogle Scholar
  40. Schippers, A., Jozsa, P.-G., & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology, 62-9, 3424–3431.Google Scholar
  41. Schippers, A., & Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1), 319–321.Google Scholar
  42. Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167, 1121–1123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Javier Sánchez España
    • 1
  • Elena González Toril
    • 2
  • Enrique López Pamo
    • 1
  • Ricardo Amils
    • 2
    • 3
  • Marta Diez Ercilla
    • 1
  • Esther Santofimia Pastor
    • 1
  • Patxi San Martín-Úriz
    • 2
  1. 1.Instituto Geológico y Minero de EspañaMadridSpain
  2. 2.Centro de Astrobiología (CSIC-INTA)MadridSpain
  3. 3.Centro de Biología Molecular (CSIC-UAM)MadridSpain

Personalised recommendations