Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain)

  • 169 Accesses

  • 20 Citations

Abstract

This work describes recent research carried out in an extremely acidic (pH 0.61–0.82) and hypersaline (e.g., 134 g/L SO4 2-, 74 g/L Fe, 7.5 g/L Al, 3 g/L Mg, 2 g/L Cu, 1 g/L Zn) leachate which seeps from a pyrite pile in San Telmo mine (Huelva, SW Spain) and forms evaporative pools of ultra-concentrated water in which attractive crystals of Zn-rich melanterite (FeIISO4 7H2O) are formed. Geochemical modeling with the Pitzer method indicates that the acidic brine was near saturation with respect to melanterite (SIMel = 0 ± 0.2). The microbiological investigation has revealed a surprisingly high biomass (1.4 × 106 cells mL−1) and an exotic ecosystem composed of acidophilic, Fe-oxidizing archaea (mainly Ferroplasma spp., representing 52% of the microbial population), and minor numbers of acidophilic bacteria (including Leptospirillum spp. (3.2%), Acidithiobacillus spp. (1.6%), and Alphaproteobacteria (2.8%)). The microbial production of FeIII allows the oxidative dissolution of pyrite and other sulphides, which results in additional inputs of FeII, SO4 2- and acidity to the system. The surfaces of the pyrite crystals show a typical etch-pitted texture, as well as blobs of elemental sulphur, which are both compatible with this indirect, microbially mediated oxidation mechanism. The composition of the acidic leachate seems to result from the combination of several processes which include: (1) formation of melanterite within the pile during relatively dry seasons, (2) subsequent dissolution of melanterite during rainy episodes, (3) microbial oxidation of FeII, (4) sulphide oxidation mediated by FeIII, (5) dissolution of chlorite and other aluminosilicates present in the pile, and (6) cooling and/or evaporation of seepage from the pile and consequent melanterite precipitation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguilera, A., Manrubia, S. C., Gómez, F., Rodríguez, N., & Amils, R. (2006). Eukaryotic community distribution and its relationship to water physicochemical parameters in an extremely acidic environment, Río Tinto (Southwestern Spain). Applied and Environmental Microbiology, 72(8), 5325–5330.

  2. Alpers, C. N., & Nordstrom, D. K. (1991). Evolution of extremely acid mine waters at Iron mountain, California—are there any lower limits to pH? Paper presented at the 2nd International Conference on the abatement of acidic drainage, MEND (Mine Environment Neutral Drainage), Ottawa, Canada, 2, 321–342

  3. Alpers, C. N., & Nordstrom, D. K. (1999). Geochemical modeling of water–rock interactions in mining environments. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 289–323

  4. Alpers, C. N., Nordstrom, D. K., & Thompson, J. M. (1994). Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. In C. N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium series 550 (pp. 324–344). Washington, DC: American Chemical Society Symposium.

  5. Alpers, C. N., Nordstrom, D. K., & Spitzley, J. (2003). Extreme acid mine drainage from a pyritic massive sulphide deposit: The iron mountain end-member. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 407–430). Vancouver: Mineralogical Association of Canada.

  6. Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., & Allen, E. E. (2006). Lineages of acidophilic archaea revealed by community genomic analyses. Science, 314, 1933–1935.

  7. Ball, J. W., & Nordstrom, D. K. (1991). User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open-File Report, 91-183 p. 189. Denver: USGS.

  8. Blowes, D. W., Reardon, E. J., Jambor, J. L., & Cherry, J. A. (1991). The formation and potential importance of cemented layers in inactive sulphide mine tailings. Geochimica et Cosmochimica Acta, 55, 965–978.

  9. Bond, P. L., Druschel, G. K., & Banfield, J. F. (2000a). Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.

  10. Bond, P. L., Smriga, S. P., & Banfield, J. F. (2000b). Phylogeny of microorganism populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 3842–3849.

  11. Baumler, D. J., Jeong, K. C., Fox, B. G., Banfield, J. F., & Kaspar, C. W. (2005). Sulfate requirement for heterotrophic growth of “Ferroplasma acidarmanus” strain fer1. Research in Microbiology, 156, 492–498.

  12. Druschel, G. K., Baker, B. J., Gihring, T. M., & Banfield, J. F. (2004). Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions, 5-2, 13–32.

  13. Edwards, K. J., Schrenk, M. O., Hamers, R., & Banfield, J. F. (1998). Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. American Mineralogist, 83, 1444–1453.

  14. Edwards, K. J., Gihring, T. M., & Banfield, J. F. (1999). Seasonal variations in microbial populations and environmental conditions at an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65, 3627–3632.

  15. Edwards, K. J., Bond, P. L., Gihring, T. M., & Banfield, J. F. (2000). An archaeal Fe-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.

  16. Frau, F. (2000). The formation-dissolution precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: Environmental implications. Mineralogical Magazine, 64, 995–1006.

  17. González-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R., & Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and Environmental Microbiology, 6, 4853–4865.

  18. Johnson, D. B. (2006). Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy, 83, 153–166.

  19. Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall, Inc.

  20. López-Archilla, A. I., & Amils, R. (1999). A comparative ecological study of two acidic rivers in southwestern Spain. Microbial Ecology, 38, 146–156.

  21. López-Archilla, A. I., Marín, I., & Amils, R. (2001). Microbial community composition and ecology of an acidic aquatic environment: the Tinto river, Spain. Microbial Ecology, 41(1), 20–35.

  22. Nordstrom, D. K. (1999). Some fundamentals of aqueous geochemistry. In: G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 117–123.

  23. Nordstrom, D. K. (2004). Modeling low-temperature geochemical processes: Treatise on geochemistry. In H. D. Holland, K. K. Turekian, & J. I. Drever (Eds.), Surface and ground water, weathering, and soils, vol. 5 (pp. 37–72). Amsterdam: Elsevier Pergamon.

  24. Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, part a. processes, techniques, and health issues: Society of economic geologists. Reviews in Economic Geology, 6A, 133–156.

  25. Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology, 34, 254–258.

  26. Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigation Report 99-4259 p. 312. Denver: USGS.

  27. Pernthaler, A., Pernthaler, J., & Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition (CARD) for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.

  28. Pitzer, K. S. (1986). Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure and Applied Chemistry, 58(12), 1599–1610.

  29. Ptacek, C. J., & Blowes, D. W. (1994). Influence of siderite on the pore-water chemistry of inactive mine-tailings impoundments. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 172–189). Washington, DC: American Chemical Society Symposium.

  30. Ptacek, C. J., & Blowes, D. W. (2000). Prediction of sulphate mineral solubility in concentrated waters. In C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Sulphate minerals: Crystallography, geochemistry, and environmental significance. Reviews in Mineralogy and Geochemistry, 40, 513–540.

  31. Ptacek, C. J., & Blowes, D. W. (2003). Geochemistry of concentrated waters at mine-waste sites. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 239–252). Vancouver: Mineralogical Association of Canada.

  32. Rimstidt, J. D., Chermak, J. A., & Gagen, P. M. (1994). Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 2–13). Washington, DC: American Chemical Society Symposium.

  33. Rowe, O. F., Sánchez-España, J., Hallberg, K. B., & Johnson, D. B. (2007). Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 9(7), 1761–1771.

  34. Sánchez-España, F. J. (2000) Mineralogy and geochemistry of the massive sulphide deposits of the Northern area of the Iberian Pyrite Belt (San Telmo-San Miguel-Peña del Hierro), Huelva, Spain. Dissertation, University of the Basque Country

  35. Sánchez-España, F. J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20(7), 1320–1356.

  36. Sánchez-España, F. J., López-Pamo, E., & Santofimia, E. (2007a). The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel river watershed, Huelva): Field and laboratory rates. Journal of Geochemical Exploration, 92, 120–132.

  37. Sánchez-España, F. J., Santofimia, E., González-Toril, E., San Martín-Úriz, P., López Pamo, E., & Amils, R. (2007b). Physicochemical and microbiological stratification of a meromictic, acidic mine pit lake (San Telmo, Iberian Pyrite Belt). In Rosa. Cidu, & Franco Frau (Eds.), Paper presented at the Symposium of the International Mine Water Association IMWA 2007: Water in Mining Environments (pp. 447–451), Cagliari, Italy.

  38. Sánchez-España, F. J., López-Pamo, E., Santofimia, E., & Diez-Ercilla, M. (2008). The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Applied Geochemistry, 23, 1260–1287.

  39. Sand, W., Gehrke, T., Jozsa, P. G., & Schippers, A. (2001). (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy, 59, 159–175.

  40. Schippers, A., Jozsa, P.-G., & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology, 62-9, 3424–3431.

  41. Schippers, A., & Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1), 319–321.

  42. Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167, 1121–1123.

Download references

Acknowledgement

Dr. Francisco Velasco (Basque Country University, UPV-EHU) is acknowledged for his kind permission to include some pictures in this work, and also for stimulating discussions about melanterite solubility. We sincerely thank the criticism and comments made by two anonymous reviewers, which greatly improved the quality of the paper.

Author information

Correspondence to Javier Sánchez España.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sánchez España, J., González Toril, E., López Pamo, E. et al. Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain). Water Air Soil Pollut 194, 243–257 (2008). https://doi.org/10.1007/s11270-008-9713-0

Download citation

Keywords

  • Acidophilic archaea
  • Fe2+
  • Fe3+
  • Melanterite solubility
  • Pyrite oxidation